
Bandwidth Optimization Through On-Chip Memory
Restructuring for HLS

Jason Cong Peng Wei Cody Hao Yu Peipei Zhou
University of California, Los Angeles

{cong, peng.wei.prc, hyu, memoryzpp}@cs.ucla.edu

ABSTRACT
High-level synthesis (HLS) is getting increasing attention from
both academia and industry for high-quality and high-productivity
designs. However, when inferring primitive-type arrays in HLS de-
signs into on-chip memory buffers, commercial HLS tools fail to
effectively organize FPGAs’ on-chip BRAM building blocks to re-
alize high-bandwidth data communication; this often leads to sub-
optimal quality of results. This paper addresses this issue via auto-
mated on-chip buffer restructuring. Specifically, we present three
buffer restructuring approaches and develop an analytical model
for each approach to capture its impact on performance and re-
source consumption. With the proposed model, we formulate the
process of identifying the optimal design choice into an integer
non-linear programming (INLP) problem and demonstrate that it
can be solved efficiently with the help of a one-time C-to-HDL
(hardware description language) synthesis. The experimental re-
sults show that our automated source-to-source code transforma-
tion tool improves the performance of a broad class of HLS designs
by averagely 4.8x.

1. INTRODUCTION
The demand for high-performance, energy-efficient comput-

ing stimulates the adoption of field programmable gate arrays
(FPGAs), which can accelerate a broad class of computational ker-
nels while supplying flexibility of reconfiguration in datacenters.
Leading datacenter operators, such as Microsoft and Baidu, have
harnessed FPGA accelerators in important datacenter applications,
e.g., search engines [1] and neural networks [2]. The Amazon Elas-
tic Compute Cloud (EC2) also introduces FPGAs in its F1 compute
instance [3]. Intel, with its $16.7 billion acquisition of Altera, pre-
dicts that 30% of servers will have FPGAs by 2020 [4], suggesting
that FPGAs are becoming a mainstream acceleration technology.
However, the long development cycle of the FPGA circuit poses a
serious challenge to meeting the time-to-market requirement of an
application. The situation may become even worse if the computa-
tional kernel to accelerate is prone to obsolescence.

High-level synthesis (HLS) [5], which allows synthesis of circuit
designs from high-level programming languages, has captured in-
creased attention from both academia and industry in an attempt to
gain fast design delivery. Commercial tools, such as Xilinx Vivado
HLS [6] and Intel SDK for OpenCL [7], can infer accelerator cir-
cuits directly from behavior-level descriptions and thus free design-
ers from bothering with the register-transfer level (RTL) details.
However, state-of-the-art HLS tools still demand a fair amount of
manual effort to ensure quality of results. Specifically, a consider-
able number of directives in the form of specialized coding styles or
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DAC ’17, June 18-22, 2017, Austin, TX, USA

© 2017 ACM. ISBN 978-1-4503-4927-7/17/06. . . $15.00
DOI: http://dx.doi.org/10.1145/3061639.3062208

annotations are necessary to guide HLS tools to infer high-quality
RTL designs from high-level descriptions. Designers also need to
manually conduct design space exploration, i.e., trying to find the
best design choice among a great number of options. Although
FPGA vendors and researchers are constantly making efforts, the
automation of generating high-quality RTL designs is still far away
from a perfect push-button process, and many issues are still open
for research.

1 void kernel(int size, int *in, int *out) {
2 int buf_in_x[Npe][B_SIZE];
3 int buf_in_y[Npe][B_SIZE];
4 int buf_out_x[Npe][B_SIZE],
5 int buf_out_y[Npe][B_SIZE];
6 for (int i=0; i<size/B_SIZE+1; i++) {
7 // double-buffer scheduling
8 if (i % 2 == 0) {
9 load_data(buf_in_x, in+i*B_SIZE);

10 compute(buf_in_y, buf_out_y);
11 store_data(out+i*B_SIZE, buf_out_x);
12 }
13 else {
14 load_data(buf_in_y, in+i*B_SIZE);
15 compute(buf_in_x, buf_out_x);
16 store_data(out+i*B_SIZE, buf_out_y);
17 }
18 }
19 }
20 void compute(int** buf_in, int** buf_out) {
21 for (int i=0; i<Npe; i++) {
22 #pragma HLS unroll
23 // simplified due to page limit
24 ... = buf_in[i][j];
25 }
26 }

(a) HLS-C code

PE1 PE2 PEN

External memory
Local buffer (32-bit width)
Processing Elements

Seg1 Seg2 SegN

(b) Accelerator architecture

Figure 1: Motivating HLS-C example design.

In this paper we focus on one of such issues that has received
less attention. Specifically, we notice that a primitive-type local
array in HLS-C [8] will be inferred to a low-width on-chip buffer
by C-to-HDL (hardware description language) synthesis, which re-
sults in poor bandwidth in the DRAM-BRAM data transfer. We
use a simple HLS-C example design in Figure 1 to illustrate this
phenomenon.1 The kernel function describes an FPGA acceler-
ator design which specifies two external memory buffers, in and
out, for input and output, respectively. The kernel function also
includes two sets of on-chip memory buffers, buf_in_x(y) (line 2)
and buf_out_x(y) (line 3), with 32-bit width that is inferred from
the 32-bit integer type. The buffers are all partitioned into Npe
partitions to enable concurrent data supply, where Npe denotes the
number of processing elements (PEs). The accelerator iteratively
loads a certain size of data from the external to on-chip memory
(line 7 or 12), processes them in parallel (line 8 or 13), and stores
the output back to DRAM (line 9 or 14). We assume that common
optimization strategies have already been applied, such as double
buffering (lines 6-15), parallel computing with duplicated PEs (line
21) and memory partitioning for buf_in_x(y) and buf_out_x(y) to
enable parallel access for each PE. The issue we study occurs in
the data load and store phases. Since the local buffers are of 32-bit
data width, only 32-bit data per cycle can be read (written) from
(to) the external memory, even though the bus between the local
buffers and the external memory can have up to 512-bit width in
our experimental platform. In other words, the utilized bandwidth
of DRAM-BRAM data transfer is only 32

512
= 6.25% of the max-

1Although being illustrated in HLS-C, the issue is generic to other HLS languages.

http://dx.doi.org/10.1145/3061639.3062208

imum achievable bandwidth, which means that the design perfor-
mance could be easily bounded by data communication.

An intuitive approach to address this issue is to let designers
manually replace all primitive-type arrays with specialized large-
width data types, such as the ap_int<W> type in HLS-C, where
W is a customized data width. Such a transformation restructures
the on-chip buffers to enable a larger data transfer width — thus a
higher bandwidth. However, it often results in inefficient BRAM
utilization and more BRAM consumption to enlarge the data width
of a BRAM buffer with a certain capacity. Given such a trade-off
between performance and resource consumption, designers have to
run HLS tools a considerable number of times in order to identify
the optimal solution.

In this paper we aim to provide an automatic on-chip buffer re-
structuring solution which identifies the optimal bit-width under
resource constraints and performs code transformation. We make
the following contributions:
• Approaches. We propose three buffer restructuring approaches,

coarse-grained, fine-grained and hybrid, with detailed analysis
of each to trade-off performance and resource consumption.
• Analytical Models. We develop analytical models for all three

approaches to quantify the performance-resource trade-off, for-
mulate the process of identifying the optimal solution into an
INLP problem, and demonstrate that the problem can be effi-
ciently solved by running the C-to-HDL synthesis only once per
design.
• Automation Tool. To further relieve the burden of manual code

transformation to realize the optimal solution, we implement a
source-to-source transformation tool to automatically generate
the improved HLS-C design. Our experimental results show that
the automated tool improves the performance of a broad class of
benchmarks by an average of 4.8x.
The remainder of the paper is organized as follows. Section 2

presents the three buffer restructuring approaches and analyzes the
performance-resource trade-off on each approach. Section 3 de-
livers the analytical models for the three approaches. Section 4
presents the automated tool implementation and experimental re-
sults. Section 5 summarizes the related work. Section 6 concludes
the paper and presents possible future work.

2. APPROACHES
Section 1 presented the issue of inefficient DRAM bandwidth

utilization due to the low-width on-chip buffers inferred from
primitive-type arrays. In this section we propose three buffer re-
structuring approaches to address this issue, and perform a detailed
analysis of the trade-off between performance and resource con-
sumption for each approach.

2.1 Fine-Grained Approach
Since the source of the problem is that primitive-type arrays are

inferred into low-width buffers, a natural solution is to declare and
use local arrays as large-width data types. We call this the fine-
grained approach. Figure 2(a) illustrates this approach through a
code update of the example design in Figure 1, and Figure 2(b)
shows the updated accelerator architecture. This update features
two major changes. First, the two sets of local arrays, buf_in_x(y)
and buf_out_x(y), are both updated as the 512-bit data type –
ap_int<512>. From the perspective of architecture, this code mod-
ification leads to a width increase in local buffers from 32 bits to
512 bits. As a result, the data transfer throughput between the ex-
ternal memory and the local buffers can reach up to 512 bits per
cycle, maximizing the DRAM bandwidth utilization. Second, each
array indexing operation is replaced with a complex switch state-
ment (lines 15-21). In detail, to retrieve the j-th integer from the
buffer buf_in[i] inside the compute function, the switch statement
first locates the 512-bit data that contains the integer buf_in[i][j/16]

and makes a 512-to-32 selection to extract the integer out. Such
a switch statement is inferred into a multiplexer circuit to realize
range selection by the HLS tool, as shown in Figure 2(b).2

1 void kernel(int size, ap_uint<512>* in,
2 ap_uint<512>* out) {
3 ap_uint<512> buf_in_x[Npe][B_SIZE/16];
4 ap_uint<512> buf_in_y[Npe][B_SIZE/16];
5 ap_uint<512> buf_out_x[Npe][B_SIZE/16];
6 ap_uint<512> buf_out_y[Npe][B_SIZE/16];
7 for (int i=0; i<size/B_SIZE+1; i++) {
8 /* The double-buffer scheduling remains

unchanged, thus omitted */
9 ...

10 }
11 }
12
13 void compute(ap_uint<512>** buf_in,
14 ap_uint<512>** buf_out) {
15 #pragma HLS unroll
16 for (int i=0; i<Npe; i++) {
17 switch (j) {
18 case 0:
19 ... = buf_in[i][j/16].range(31, 0);
20 // intermediate cases are omitted
21 case 15:
22 ... = buf_in[i][j/16].range(511, 480);
23 }
24 }
25 } (a) HLS-C code

PE1 PE2 PEN

External memory
Local buffer (512-bit width)

Processing Elements

Seg1 Seg2 SegN

MUX MUX MUX MUX MUX MUX

(b) Accelerator architecture

Figure 2: Example of fine-grained approach.

In terms of throughput, the accelerator performance of data com-
munication is significantly improved (by up to 16x in the exam-
ple design) by applying the fine-grained approach; the computation
time remains almost unchanged. Since the load, compute and store
phases are overlapped (because of double buffering), the overall
throughput will probably be improved if the accelerator is bounded
by data communication. On the other hand, the fine-grained ap-
proach leads to extra LUT and BRAM consumption. For example,
each switch statement for array indexing in the accelerator design
is inferred into a multiplexer, which leads to extra LUT consump-
tion; BRAM buffers with the same capacity but different bit-widths
may experience up to 15x difference in BRAM consumption.

2.2 Coarse-Grained Approach
The fine-grained approach achieves performance improvement

at the cost of LUT and BRAM consumption, and it requires mod-
ification to the PE’s HLS-C description. An alternative approach
avoids such modification and does not consume extra LUTs, with
the price of extra Flip-Flop (FF) consumption as well as larger con-
sumption of BRAM. We call this the coarse-grained approach, as
illustrated in Figure 3.

Compared to the fine-grained approach, the coarse-grained ap-
proach has two major differences. First, instead of enlarging the
width of the local buffers, the coarse-grained approach adds an
intermediate layer of BRAM buffers, named staging buffers, be-
tween the local buffers and the external memory, as shown in Fig-
ure 3(b). This layer, consisting of large-width buffers (512-bit in
the example design), supplies a high DRAM-BRAM data trans-
fer speed. The staging buffers, same as the local buffers, are par-
titioned into Npe partitions, where Npe denotes the number of
PEs. This makes the data movement between the staging and lo-
cal buffers in parallel. The other difference is illustrated in the
compute function in Figure 3(a). Instead of letting PEs directly
fetch data from large-width buffers, the coarse-grained approach
requires a BRAM-BRAM data copy between the staging and lo-
cal buffers before and after computation, which leaves the PE logic
unchanged. While this leads to an addition overhead, it can be
alleviated through the parallel data movement, and thus does not
considerably affect the overall performance.

In terms of resource consumption, the coarse-grained approach
consumes more BRAM blocks because of the existence of both
staging and local buffers, but less LUTs since no extra multiplexer
is needed. Meanwhile, it consumes extra FFs to realize data ex-
2Using the range API with variable lower and upper bounds can reduce the switch
statement to one line of code, but causes over 10x LUT consumption.

1 void kernel(int size, ap_uint<512>* in,
2 ap_uint<512>* out) {
3 ap_uint<512> buf_in_x[Npe][B_SIZE/16];
4 ap_uint<512> buf_in_y[Npe][B_SIZE/16];
5 ap_uint<512> buf_out_x[Npe][B_SIZE/16];
6 ap_uint<512> buf_out_y[Npe][B_SIZE/16];
7 for (int i=0; i<size/B_SIZE+1; i++) {
8 /* The double-buffer scheduling remains

unchanged, thus omitted */
9 ...

10 }
11 }
12
13 void compute(ap_uint<512>** kernel_buf_in,
14 ap_uint<512>** kernel_buf_out) {
15 int buf_in[Npe][B_SIZE];
16 int buf_out[Npe][B_SIZE];
17 #pragma HLS unroll
18 for (int i=0; i<Npe; i++) {
19 copy_data(buf_in[i], kernel_buf_in[i]);
20 ... = buf_in[i][j];
21 copy_data(kernel_buf_out[i], buf_out[i]);
22 }
23 }

(a) HLS-C code

PE1 PE2 PEN

External memory

Local buffer (32-bit width)

Processing Elements

Seg1 Seg2 SegN

Staging buffer (512-bit width) Seg1 Seg2 SegN
Shift Reg. Shift Reg. Shift Reg.

(b) Accelerator architecture

Figure 3: Example of coarse-grained approach.

change (though usually not the bottleneck) between the staging and
local buffers. Table 1 summarizes the impact of both approaches on
performance and resource consumption.
Table 1: Impact of fine- and coarse-grained approaches on perfor-
mance and resource consumption.

Approach Fine-Grained Coarse-Grained
Load Perf. + +
Compute Perf. = -
Store Perf. + +
LUT Consumption + =
BRAM Consumption + ++
FF Consumption = +

2.3 Hybrid Approach
Section 2.1 and 2.2 make it clear that both the fine-grained and

coarse-grained approaches have their pros and cons. The former
establishes a positive correlation between the LUT consumption
and the DRAM-BRAM bandwidth, and thus does not perform well
for LUT-consuming accelerators. The latter consumes more on-
chip memory and FFs, and introduces an overhead on computation.
To fully cover the design space of both approaches and discover
more design choices to find potentially better solutions, we pro-
pose a hybrid approach, as illustrated in Figure 4. Compared to the
fine-grained approach, the hybrid approach decouples the correla-
tion between the LUT consumption and the DRAM-BRAM band-
width, thus allowing designs to have both a large DRAM-BRAM
bandwidth and a low LUT consumption. Compared to the coarse-
grained approach, the computation overhead exerted by the data
exchange between the staging and local buffers can be alleviated
with an enlarged local buffer width. As illustrated in the example,
the staging-local data exchange is 4x faster than that in Figure 3,
since the width of the local buffers is increased from 32 to 128 bits.

In summary, the hybrid approach enables more design choices
to better balance the LUT, BRAM and FF consumption, and thus
further improve the qualities of accelerator designs. However, such
an advantage comes at the price of requiring designers to run HLS
synthesis millions of times to try all possible combinations of (bwc,
bwf , NPE), where bwc, bwf and NPE denote the width of the
staging buffers, that of the local buffers, and the number of PE du-
plicates, respectively. To relieve this certainly overwhelming bur-
den, this paper establishes analytical models for all three buffer
restructuring approaches (Section 3), and implements a source-to-
source transformation tool to recognize the optimal solution by run-
ning HLS synthesis only once (Section 4).

2.4 Problem Formulation
In this paper we target a HLS-C program with NPE processing

elements (PEs). Each PE has Nref array references. The input
data are processed in a coarse-grained three-stage pipeline, where
the three stages are load, compute and store. In the load stage, the

1 void kernel(int size, ap_uint<512>* in,
ap_uint<512>* out) {

2 ap_uint<512> buf_in_x[Npe][B_SIZE/16],
buf_in_y[Npe][B_SIZE/16];

3 ap_uint<512> buf_out_x[Npe][B_SIZE/16],
buf_out_y[Npe][B_SIZE/16];

4 for (int i=0; i<size/B_SIZE+1; i++) {
5 /* The double-buffer scheduling remains

unchanged, thus omitted */
6 ...
7 }
8 }
9

10 void compute(ap_uint<512>** kernel_buf_in,
11 ap_uint<512>** kernel_buf_out) {
12 ap_uint<128> buf_in[Npe][B_SIZE /4];
13 ap_uint<128> buf_out[Npe][B_SIZE/4];
14 #pragma HLS unroll
15 for (int i=0; i<Npe; i++) {
16 copy_data(buf_in[i], kernel_buf_in[i]);
17 case 0:
18 ... = buf_in[i][j/4].range(31, 0);
19 // intermediate cases are omitted
20 case 3:
21 ... = buf_in[i][j/4].range(127, 96);
22 }
23 copy_data(kernel_buf_out[i], buf_out[i]);
24 }
25 }

(a) HLS-C code

External memory
Staging buffer (512-bit width) Seg1 Seg2 SegN

Shift Reg. Shift Reg. Shift Reg.

Local buffer (128-bit width) Seg1 Seg2 SegN

PE1 PE2 PENProcessing Elements MUX MUX MUX MUX MUX MUX

(b) Accelerator architecture

Figure 4: Example of hybrid approach.

accelerator loads a certain size (denoted by Sin) of data with Ntask

independent tasks, which are processed in parallel by all PEs. The
output size of the store stage is denoted by Sout. For ease of de-
scription, we assume the input and output data share the same bit-
width, denoted by bwori, but our methods are applicable to designs
with non-uniform input/output types as well. Our objective is to
derive the optimal combination of (bwc, bwf , NPE) for each pro-
posed approach to maximize the overall performance. Accordingly,
the problem is defined as follows:

Problem Definition: Given a HLS-C program, determine the val-
ues of bwc, bwf and NPE under resource constraints so that the
performance is maximized.

Eq. 1 presents the overall execution cycle of the accelerator de-
sign.

C = max(Ccomp, Cload, Cstore) (1)

where Ccomp, Cload, and Cstore are the execution cycles of the
compute, load and store phases. Note that we assume the input
design is implemented with double buffering so that the load, com-
pute and store phases are able to be overlapped. As a result, the
execution cycle is dominated by the most time-consuming phase.

Eq. 2 presents the execution cycle for each phase.

Ccomp =
CPE ×Ntask

NPE

Cload = Cinit +
Sin

bwori

(2)

Cstore = Cinit +
Sout

bwori

where CPE is the latency of each PE in doing one individual job,
and Cinit is the initialization overhead of each external memory ac-
cess, which is platform-dependent. Specifically, the value of Cinit

is 100 cycles in our experimental platform.
Meanwhile, the design has to meet the resource constraints, as

shown in Eq. 3. B, L, and FF denote the use of on-chip BRAM
blocks, LUTs, and flip-flops, respectively. Note that we ignore the
DSP constraint since none of the proposed approachs will increase
the DSP consumption.

B ≤ Btotal

L ≤ Ltotal (3)
FF ≤ FFtotal

To find the optimal solution to this problem, in Section 3 we
discuss building an analytical model for each approach to capture
its impact on performance and resource utilization.

3. ANALYTICAL MODELS
In this section, we model performance and resource utilization

of proposed approaches. According to the models, we formulate
the problem of identifying the optimal design choice to an integer
non-linear programming (INLP) problem and demonstrate that this
INLP problem can be solved efficiently by running the HLS syn-
thesis only once.

3.1 Fine-Grained Model
The fine-grained approach affects the consumption of both LUTs

and BRAMs, so we model both as follows. The cost of BRAM
blocks to store a certain size of data in a certain width of BRAM
buffer is modeled by Eq. 4.

V (s, bw) = d
s

Nblk(bw)× 18K
e ×Nblk(bw) (4)

where s denotes the size of data to store, and Nblk(bw) represents
the BRAM consumption of a unit bw-width buffer. The constant,
18K, is the capacity of a BRAM block. Nblk(bw) is further mod-
eled in Eq. 5, where 36 is the maximum achievable bit-width of a
BRAM block.

Nblk(k) = d
k

36
e (5)

We then use the above equations to model the total BRAM block
usage after applying the fine-grained approach, which is the origi-
nal block usage plus the extra BRAM blocks consumed by all trans-
formed local buffers with larger bit-widths:

B = B0 + NPE ×

BPE +
∑

i∈buf

(V (Si, bwf)− V (Si, bwori))

 (6)

where BPE is the number of BRAM blocks within each PE, B0

denotes other unaffected BRAM blocks, and buf is a set of all
transformed local buffers. As can be seen, the difference between
enlarged bit-width (bwf) and the original bit-width (bwori) has a
positive correlation to the additional BRAM block consumption.

In addition, as is mentioned in Section 2.1, the fine-grained ap-
proach consumes extra LUTs to form multiplexers for indexing a
specific data. The multiplexer is implemented as a LUT-tree struc-
ture to select the necessary bit hierarchically. It means that if we
want to index m bits from a buffer with n bit-width, we have to
create m T-to-1 multiplexers (T = d n

m
e), each of which forms a

dlog4T e-level LUT-tree. As a result, Eq. 7 quantifies the number
of LUTs needed to construct an n-to-m multiplexer.

M(n,m) = m×
dlog4Te∑

i=1

d
T

4i
e (7)

Based on Eq. 7, we model the extra LUT consumption of the
entire accelerator design in Eq. 8. Here, within each PE, Nref is
the number of indexing operations and LPE is the original LUT
consumption for each PE.

L = L0 + NPE × (LPE + Nref ×M(bwf , bwori)) (8)

The overhead of extra LUT consumption is positively related to
the number of array indexing operations in a PE, and thus will be-
come severe if a PE includes a large number of such operations.
For example, the AES kernel (Advanced Encryption Standard, see
Section 4) used in our experiments has 35 array references with
8-bit per reference. It implies that the LUT consumption will be
increased by around 166× if we use 512-bit as the local buffer bit-
width. As a result, the fine-grained approach is able to benefit the
designs with a small number of array accesses.

In addition, the number of saved data transfer cycles is propor-
tional to the ratio of enlarged local buffer bit-width to the original
one (bwf/bwori), as shown in Eq. 9.

Cload = Cinit +
Sin

bwf

Cstore = Cinit +
Sout

bwf

(9)

Finally, we want to mention that since the fine-grained approach
does not fundamentally change the PE design, the PE latency re-
mains unchanged.

3.2 Coarse-Grained Model
Since the coarse-grained method reconstructs on-chip memory

by inserting a staging buffer with a larger bit-width between the
external DRAM and PEs, it reduces data transfer cycles by increas-
ing the memory bandwidth. Specifically, the number of saved data
transfer cycles is proportional to the ratio of increased bit-width
bwc compared with bwori.

Cload = Cinit +
Sin

bwc

Cstore = Cinit +
Sout

bwc

(10)

Eq. 10 implies that the benefit of applying coarse-grained approach
becomes observable when data size S is large enough.

On the other hand, different from the fine-grained approach, ad-
ditional data transfer that required for the inserted staging buffer
causes performance overhead, as shown in Eq. 11. The first term
of Eq. 11 is the cycle number for transferring data from the staging
buffer to the local buffer. As we have mentioned in Section 2.2, the
data transfer can be done in parallel and will not be a bottleneck.

Ccomp =
Sin + Sout

NPE × bwori

+
CPE ×Ntask

NPE

(11)

Meanwhile, FFs are used for implementing shift registers that are
inferred by the HLS tool for laying out data from staging buffers to
local buffers with relative small bit-widths. We model the cost of
flip-flops for shift registers as follows.

FF = FF0 + NPE × (FFPE + Nbuf × bwc) (12)

On the other hand, similar to the fine-grained approach, we
model the required on-chip memory for an inserted staging buffer
as follows.

B = B0 + NPE ×

BPE +
∑

i∈buf

V (Si, bwc)

 (13)

Since the total on-chip memory capacity is usually a few
megabytes, the value of bwc may not be large if the design has
already utilized most BRAM blocks.

3.3 Hybrid Method Model and Optimization
In order to apply both approaches simultaneously (hybrid

method) and deal with the trade-off, we consider the pros and cons
of both approaches as shown in Table 1. Clearly, since both ap-
proaches require more or less BRAM blocks, determining the bit-
widths of staging buffers and local buffers forms a trade-off which
highly depends on the design.

We formulate the trade-off as an Integer Non-Linear Program-
ming (INLP) problem that is defined in Eq. 14-Eq. 25. Eq. 14-
Eq. 19 are objective functions while Eq. 20-Eq. 25 are constraints.
The binary variable t in Eq. 26 is used to indicate if the staging
buffer is necessary to be inserted.

This formulation is an INLP problem because 1) several equa-
tions are not linear due to the products and ceilings and 2) all vari-
ables are integers. Although the INLP problem is NP-hard, the val-
ues of most variables are able to be inferred from either the design
or hardware platform. Specifically, we categorize all variables into
three types as shown in Table 2. Design-dependent variables can be
retrieved via static analysis. Platform-dependent variables, such as
resource capacities, can be acquired by the hardware specification.
Both-dependent variables represent the baseline performance and
resource utilization of the design on a specific platform, which can
also be obtained by one-time C-to-HDL synthesis.

min : C = max (Ccomp, Cload, Cstore) (14)

subject to

Cload = Cinit +
Sin

bwc

(15)

Cstore = Cinit +
Sout

bwc

(16)

Ccomp = t×
Sin + Sout

NPE × bwf

+
CPE ×Ntask

NPE

(17)

L = L0 + NPE × (LPE + Nref ×M(bwf , bwori)) (18)
B = B0 + NPE × [BPE

+
∑

i∈buf

(t× V (Si, bwc) + V (Si, bwf)− V (Si, bwori))] (19)

FF = FF0 + NPE × (FFPE + t×Nbuf × bwc) (20)
L ≤ Ltotal (21)
B ≤ Btotal (22)

FF ≤ FFtotal (23)
NPE ≥ 1 (24)
bwc ≥ bwf ≥ bwori (25)

t = d
bwc − bwf

bwc

e (26)

Table 2: Variable dependency categorization.
Type Variables
Design Sin, Sout, Ntask , NRef , Bbuf , bwori, NPE

Platform Ltotal, Btotal, FFtotal, Cinit, bwBRAM

Both CPE , L0, LPE , B0, BPE , FFPE , FF0

Consequently, we can find that as long as we are able to run
the C-to-HDL synthesis once per design, the number of target
variables is reduced to three (NPE , bwc and bwf). As a re-
sult, the complexity of the design space exploration process is
O(PE × max(bwc) × max(bwf)). In addition, we can further
reduce the design options of solving the INLP problem by intro-
ducing other hardware specific constraints.
PE number limitation: Since the maximum PE number in a de-
sign is limited by the hardware resource (e.g. BRAM), the max-
imum PE number in a design is at most 2940 — the number of
BRAM blocks on the FPGA fabric (although it is almost impossi-
ble to have 2940 PEs).
Bit-width limitation: The bit-width of an on-chip BRAM buffer
that has interface to DRAM is limited to 512-bit as it is the max-
imum bit-width supported by in the experimental platform. This
affects both bwc and bwf .
Efficient staging buffer bit-width: While restricted to no larger
than 512-bit, the most efficient bwc value is always dividable by
36:

THEOREM 1. A design with x-width staging buffers achieves
the highest performance when x is dividable by 36.

PROOF. Let the BRAM consumption of the x-width staging
buffer be Bx. Assuming x is not dividable by 36, then there
must exist another y-width staging buffer where y > x ∧ y =
36× k(k ∈ Z) such that By = Bx. According to Eq. 10, the stag-
ing buffer bit-width is proportional to the performance when data
size is large enough and the design is communication-bounded, so
a design with y-width staging buffer has a higher performance than
that of a design with x-width staging buffer. This contradicts the
supposition.

According to the theorem, we only need to explore b 512
36
c = 14

values of bwc. Based on the these constraints, the solution space
is reduced to 2940 × 14 × 512 ' 21M . This number of design
options is able to be explored exhaustively by a modern CPU in a
few seconds.

4. EXPERIMENT

4.1 Implementation
We implement the proposed approaches via a source-to-source

code transformation tool that is compatible with the Xilinx HLS
design flow, as shown in Figure 5. Our implementation of code
transformation is based on the ROSE compiler infrastructure [9]
with Merlin compiler front-end APIs [10] which is developed by
Falcon Computing Solutions [11] and based on the CMOST [12]
compilation flow developed at UCLA. The framework takes a HLS-
C program as an input and perform the C-to-HDL synthesis only
once to collect necessary performance and resource utilization pa-
rameters listed in Table 2 to initialize the model. Then the design
space exploration is performed for identifying the optimal design
point (bwc, bwf , NPE) for all approaches. Finally, the framework
performs code transformation using the parameters to generate the
optimized HLS-C design.

High-Level Synthesis Analytical Model Initialization

HLS-C program

Design Space Exploration Code Transformation Optimized HLS-C program

Figure 5: Overall execution flow.

4.2 Experimental Setup
This paper demonstrates the performance improvement lead by

the automated tool using a set of HLS-C accelerator benchmarks
in MachSuite [13]. MachSuite is a benchmark suite that consists
of a broad class of HLS-C synthesizable accelerator designs. We
apply a series of performance optimization strategies, including
data tiling, pipelining, PE duplication and double buffering, to de-
rive a set of designs with decent performance as the baseline. Ta-
ble 4 presents a brief description as well as the resource utiliza-
tion of each baseline design 3. We can see that at least one type
of resource has been fully utilized. The baseline and transformed
designs are both synthesized using the Xilinx SDAccel develop-
ment environment(v2015.4) [14], and executed on a Xilinx Virtex-
7 board (Alpha Data ADM-PCIE-7V3) [15] that is equipped with a
XC7VX690T-2 FPGA board, and a DDR3-1600 DRAM (12.8GB/s
or 64 bytes/cycle off-chip bandwidth).

4.3 Results
Table 3 shows the performance improvement of the best designs

in all three approaches. Based on the experimental results, we cat-
egorize the benchmarks into four classes, and discuss them as fol-
lows.

Coarse-grained preferred. The AES benchmark belongs to this
category. We can see from Table 4 that the AES design is heavily
LUT-bounded. The coarse-grained approach that features no extra
LUT consumption hence serves as a natural fit for such a LUT-
bounded design. As a result, the coarse-grained approach leads to
the optimal design choice.

Fine-grained preferred. The NW, SORT and SPMV bench-
marks belong to this category. These benchmarks are all BRAM-
bounded, so the fine-grained approach that essentially trades
BRAM with LUTs is better fitted and leads to the optimal design
choice.

Hybrid preferred. The KMP kernel belongs to this category.
We can see from Table 4 that the consumption of LUTs and BRAM
are fairly balanced, i.e., it is not obviously bounded by a certain
type of resource. As a result, the hybrid approach that carefully
balances the LUT and BRAM consumption leads to the optimal
solution.

Computation bounded. The VITERBI kernel belongs to this

3The percentage is based on the resources available for users, which is around 70% of
those provided by the FPGA fabric.

Table 3: Performance comparison for proposed three approaches.
Coarse-Grained Fine-Grained Hybrid

bwc ∆NPE(%) Speedup bwf ∆NPE(%) Speedup bwf bwc ∆NPE(%) Speedup
AES 504 0.0% 7.0x 96 30.0% 5.8x N/A 504 0.0% 7.0x
KMP 108 65.9% 10.6x 64 60.9% 8.0x 36 108 65.9% 10.8x
NW 36 0.0% 2.4x 72 0.0% 2.5x 72 N/A 0.0% 2.5x

SORT 180 47.5% 1.9x 125 43.4% 2.1x 125 N/A 43.4% 2.1x
SPMV 504 50.0% 4.3x 432 50.0% 5.3x 432 N/A 50.0% 5.3x

VITERBI 32 0.0% 1.0x 32 0.0% 1.0x 32 32 0.0% 1.0x

Table 4: Benchmarks and resource utilization of baseline designs.
Bench. Description LUT BRAM FF
AES Advanced encryption standard 99.4% 6.8% 30.9%
KMP String matching 93.4% 97.8% 22.1%
NW Needleman-Wunsch alignment 36.1% 96.4% 43.1%
SORT Merge sort 81.6% 97.8% 49.6%
SPMV Sparse matrix-vector mult. 30.0% 98.0% 25.6%
VITERBI Viterbi DP algorithm 98.6% 85.9% 41.5%

category. The compute phase of VITERBI takes longer time than
the load and store phases even before any buffer restructuring. Our
solution is targeted at communication-bounded kernels and cannot
benefit the kernel in this category.

In summary, the fine-grained approach is more suitable for the
BRAM-bounded kernels, and the coarse-grained approach for the
LUT-bounded kernels. The hybrid approach may find better design
choices if the kernel is not clearly bounded by any individual type
of resource.

5. RELATED WORK
High-Level synthesis optimization. Prior work proposed auto-

matic transformation for on chip buffer data reuse, memory par-
titioning or memory merging [16] to improve performance [17]
and minimize off-chip data volume [18, 19]. Polyhedral models
are used to expose dependencies and data access in the loops and
customized on-chip buffers are automatically generated. However,
these work have not explored the DRAM-BRAM bandwidth op-
timization by altering data transfer bit-width using buffer reorga-
nization. Our work is orthogonal to theirs and can be applied to
their solutions to further increase the system performance. [20,
21] characterized DRAM-BRAM bandwidth with data transfer bit-
width. They found that larger bit-width achieves higher bandwidth
even when the data access size is the same. However, there are
no analytic models on resource usage and cycle time with the bit-
width, and data transfer bit-width are set as 512 as default in their
design, which is not optimal for other applications.

Memory abstraction. LEAP [22], CoRAM [23], LMC [24]
provided abstract memory management and hid data transfer and
memory interface from users. LEAP [22] provided general-purpose
cache like memories and built hierarchies for host memory, FPGA
on-board memory and on-chip RAM buffers. LMC [24] was
based on LEAP and provided compiler flow to do static program
analysis to optimize memory access among different applications.
CoRAM [23] provided high-level C-based language for application
users to invoke memory operations called control actions which ab-
stract away the detailed hardware support. Though the programma-
bility and design portability are improved in these work, design
choice that achieves the highest performance under resource con-
straints in terms of memory system are not discussed. Our work
can potentially serve as the back-end support in these frameworks
for better utilization of FPGA resources and higher performance.

6. CONCLUSION AND FUTURE WORK
In this paper, we target at the issue of inefficient DRAM band-

width utilization due to primitive-type arrays in HLS-C, and pro-
pose three approaches to address them. With a carefully-design
analytical model and automation tool, we are able to efficiently
identify the optimal design choice and perform the code transfor-
mation automatically, supplying a nearly push-button experience to

end users. The proposed approach is based on the execution pat-
tern where the input data are processed in a tiled fashion so that
a load-compute-store pipeline is formed. Hence, it does not cover
the designs with extensive random accesses to a large memory foot-
print. This remains as possible future work.

Acknowledgments
This work is partially supported by the Center for Domain-Specific
Computing under the NSF InTrans Award CCF-1436827, fund-
ing from CDSC industrial partners including Baidu, Fujitsu Labs,
Google, Huawei, Intel and Mentor Graphics; C-FAR, one of the six
centers of STARnet, a Semiconductor Research Corporation pro-
gram sponsored by MARCO and DARPA. We also want to thank
Xilinx for FPGA boards and software donation.

7. REFERENCES
[1] A. Putnam et al., “A reconfigurable fabric for accelerating large-scale

datacenter services,” in ISCA, 2014.
[2] J. Ouyang et al., “Sda: Software-defined accelerator for largescale dnn

systems,” in Hot Chips, 2014.
[3] “Amazon ec2 f1 instance,” 2016.

https://aws.amazon.com/ec2/instance-types/f1/.
[4] “Intel to Start Shipping Xeons With FPGAs in Early 2016.”

http://www.eweek.com/servers/intel-to-start-shipping-xeons-with-fpgas-in-
early-2016.html.

[5] J. Cong et al., “High-level synthesis for fpgas: From prototyping to
deployment,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 30, no. 4, pp. 473–491, 2011.

[6] “Xilinx Vivado HLS.”
http://www.xilinx.com/products/design-tools/ise-design-suite/index.htm.

[7] “Intel FPGA SDK for OpenCL.” https://www.altera.com/products/design-
software/embedded-software-developers/opencl/overview.html.

[8] “Vivado Design Suite User Guide: High-Level Synthesis.”
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-
vivado-high-level-synthesis.pdf.

[9] “Rose Compiler Infrastructure.” http://rosecompiler.org/.
[10] J. Cong, M. Huang, P. Pan, Y. Wang, and P. Zhang, “Source-to-source

optimization for HLS,” in FPGAs for Software Programmers, Springer
International Publishing, 2016.

[11] “Falcon Computing Solutions, Inc.” http://falcon-computing.com/.
[12] P. Zhang et al., “CMOST: A system-level fpga compilation framework,” in

DAC, 2015.
[13] B. Reagen et al., “Machsuite: Benchmarks for accelerator design and

customized architectures,” in IISWC, 2014.
[14] “SDAccel Development Environment.”

http://www.xilinx.com/products/design-tools/software-zone/sdaccel.html.
[15] “Alpha Data ADM-PCIE-7V3 datasheet.”
[16] C. Pilato et al., “System-level memory optimization for high-level synthesis of

component-based socs,” in CODES, 2014.
[17] W. Zuo et al., “Improving high level synthesis optimization opportunity through

polyhedral transformations,” in FPGA ’13.
[18] L.-N. Pouchet et al., “Polyhedral-based data reuse optimization for configurable

computing,” in FPGA ’13.
[19] C. Alias et al., “Optimizing remote accesses for offloaded kernels: Application

to high-level synthesis for fpga,” in DATE ’13.
[20] Y.-k. Choi et al., “A quantitative analysis on microarchitectures of modern

cpu-fpga platforms,” in DAC ’16.
[21] C. Zhang et al., “Caffeine: Towards uniformed representation and acceleration

for deep convolutional neural networks,” in ICCAD ’16.
[22] M. Adler et al., “Leap scratchpads: Automatic memory and cache management

for reconfigurable logic,” in FPGA ’11.
[23] E. S. Chung et al., “Coram: An in-fabric memory architecture for fpga-based

computing,” in FPGA ’11.
[24] H.-J. Yang et al., “Lmc: Automatic resource-aware program-optimized memory

partitioning,” in FPGA ’16.

