
Author Copy. Personal Research Use Only. FCCM’18 Latte

Latte: Locality Aware Transformation for High-Level Synthesis

Jason Cong, Peng Wei, Cody Hao Yu, Peipei Zhou∗
University of California Los Angeles, Computer Science
{cong, peng.wei.prc, hyu, memoryzpp}@cs.ucla.edu

Abstract—In this paper we classify the timing degradation
problems using four common collective communication and
computation patterns in HLS-based accelerator design: scatter,
gather, broadcast and reduce. These widely used patterns scale
poorly in one-to-all or all-to-one data movements between off-
chip communication interface and on-chip storage, or inside
the computation logic. Therefore, we propose the Latte microar-
chitecture featuring pipelined transfer controllers (PTC) along
data paths in these patterns. Furthermore, we implement an
automated framework to apply our Latte implementation in HLS
with minimal user efforts. Our experiments show that Latte-
optimized designs greatly improve the timing of baseline HLS
designs by 1.50x with only 3.2% LUT overhead on average, and
2.66x with 2.7% overhead at maximum.

I. INTRODUCTION

Field-programmable gate arrays (FPGAs) have gained popu-
larity in accelerating a wide range of applications with high
performance and energy efficiency. High-level synthesis (HLS)
tools, including Xilinx Vivado HLS [1] and Intel OpenCL [2],
greatly improve FPGA design feasibility by abstracting away
register-transfer level (RTL) details. With HLS tools, a devel-
oper is able to describe the accelerator in C-based programming
languages without considering many hardware issues such as
clock and memory controller, so the accelerator functionality
can be verified rapidly. Furthermore, the developer can rely
on HLS pragmas that specify loop scheduling and memory
organization to improve the performance. In particular, kernel
replication is one of the most effective optimization strategies
to reduce the overall cycle latency and improve resource
utilization. However, as reported in previous work [3, 4, 5, 6],
the operating frequency of a scaled-out accelerator after place
and route (P&R) usually drops, which in the end diminishes
the benefit from kernel replication.

Fig. 1 illustrates the frequency degradation for a broad
class of applications (details in Section IV). Each dot point
shows frequency and corresponding resource utilization for an
application with a certain processing element (PE) number.
The (black dashed) trend line characterizes the achieved
frequency under certain resource usage. On average, HLS
generated accelerators sustain a 200 MHz on 30% resource
usage. However, the frequency drops to 150 MHz when usage
increases to 74% (shown in two triangle markers). An extreme
case is when dot A runs at as low as 57 MHz when using 88%
resource.

y = -112.6x + 233.74

0

50

100

150

200

250

300

0% 20% 40% 60% 80% 100%

baseline

(30%, 200MHz)

(74%, 150MHz)

fr
eq

u
en

cy
 (

M
H

z)

res. util.

(88%, 57MHz)A:

Fig. 1: Frequency vs. area: Freq decreases as design size scales out.

* First author. The name Latte comes from Locality Aware Transformation
for high-level synThEsis.

We investigate such cases and spot the Achilles’ heel in
HLS design that has attracted less attention—in particular, one-
to-all or all-to-one data movement between off-chip DRAM
interface and on-chip storage logic (BRAM or FF), or inside
the computation logic. Using the terminology from message
passing interface (MPI) [7], we introduce four collective com-
munication and computation patterns: scatter, gather, broadcast
and reduce. They are used in most, if not all, accelerators.
Different from MPI, the four patterns in HLS are in the context
of on-chip data movement, instead of movement between
servers. We observe that the on-chip data path delay in these
patterns scales up when the design size increases, but HLS
tools do not estimate the interconnect delay correctly or make
a conscientious effort to control or cap the growth of long
interconnect delays at HLS level.

A common solution to long critical path is to insert registers
in the datapath in the RTL [8], logic synthesis or physical
synthesis phase. However, it requires nontrivial efforts in
buffering at the RTL level, which calls for a high-level solution.
Also, prior work in systolic array applications [6, 9, 10, 11]
and compilers [12] feature neighbor-to-neighbor interconnect
in tightly coupled processing units and eliminate global
interconnect. However, classic systolic array requires the
application to have a regular data dependency graph, which
limits the generality of the architecture. Moreover, neighbor-to-
neighbor register buffering introduces logic overhead to each
processing unit and incurs non-negligible overhead in the total
area.

To address the above-mentioned challenges in low-level
buffer insertion, generality and non-negligible area overhead,
in this paper we propose the Latte microarchitecture. In data
paths of the design, Latte features pipelined transfer controllers
(PTC), each of which connects to only a set of PEs to
reduce critical path. Intrinsically, Latte is applicable to general
applications as long as the patterns occur. In addition, to
improve the resource efficiency, we also explore the design
choices of Latte in the number of PTC inserted, and offer
performance/area-driven solutions. We implement Latte in HLS
and automate the transformation for PTC insertion, which eases
the programming efforts. In summary, this paper makes the
followings contributions:

• Identifying four common collective communication and
computation patterns: scatter, gather, broadcast and reduce
in HLS that cause long critical paths in scaled-out designs.

• Latte microarchitecture featuring customizable pipelined
transfer controllers to reduce critical path.

• An end-to-end automation framework that realizes our
HLS-based Latte implementation.

Our experiments on a variety of applications show that the
Latte-optimized design improves timing of the baseline HLS
design by 1.50× with 3.2% LUT overhead on average, and
2.66× with 2.7% overhead at maximum.

1

Author Copy. Personal Research Use Only. FCCM’18 Latte

II. MOTIVATION AND CHALLENGES

In this section we use a common practice accelerator design
template shown in Fig. 2 to illustrate the low operating
frequency in scaled-out designs generated by HLS tools. The
app defines an accelerator that has input buffer local_in
and output buffer local_out. In each iteration, it reads
in BUF_IN_SIZE data (line 13) from off-chip to on-chip
buffers, processes in NumPE kernels (line 14, 26), and then
writes to off-chip from on-chip buffers (line 15). Here, double
buffer optimization (A/B buffers) is applied to overlap off-chip
communication and computation. Loop unroll (lines 23-26)
and local buffer partitioning (lines 6-9) are applied to enable
PE parallel processing.

In the remainder of the section, we summarize the design
patterns from the corresponding microarchitecture in Fig. 3(a)
and analyze the root cause of the critical path.
1 #define BUF_IN_PER_PE BUF_IN_SIZE/NumPE
2 #define BUF_OUT_PER_PE BUF_OUT_SIZE/NumPE
3 void app(int data_size,
4 int *global_in, int *global_out) {
5 // local buffer
6 int local_in_A[NumPE][BUF_IN_PER_PE];
7 int local_in_B[NumPE][BUF_IN_PER_PE];
8 int local_out_A[NumPE][BUF_OUT_PER_PE],
9 int local_out_B[NumPE][BUF_OUT_PER_PE];

10 for (int i = 0; i < data_size/BUF_IN_SIZE+1; i++) {
11 // double buffer
12 if (i % 2 == 0) {
13 buffer_load(local_in_A, global_in+i*BUF_IN_SIZE);
14 buffer_compute(local_in_B, local_out_B);
15 buffer_store(global_out+i*BUF_OUT_SIZE, local_out_A);
16 }
17 else {
18 buffer_load(local_in_B, global_in+i*BUF_IN_SIZE);
19 buffer_compute(local_in_A, local_out_A);
20 buffer_store(global_out+i*BUF_OUT_SIZE, local_out_B);
21 } } }
22 void buffer_compute(int** local_in, int** local_out) {
23 for (int i=0; i<NumPE; i++) {
24 #pragma HLS unroll
25 // kernel replication
26 PE_kernel(local_in[i], local_out[i]);}
27 }

Fig. 2: HLS accelerator design template.

PE PE PE PEPE PEPE

buffer_load

buffer_store

AXI

MUX

Scatter

Gather

n_match[0..NumPE] from PEs

final_match
Reduce

n_match[0..NumPE] from PEs

final_match
Reduce

local_key[0][KEY_SIZE]

to local_key[1..NumPE][...]
or to PEs directly

Broadcast
local_key[0][KEY_SIZE]

to local_key[1..NumPE][...]
or to PEs directly

Broadcast

(a) scatter and gather

(b) broadcast

(c) reduce

local_out [NumPE][...]

local_in [NumPE][...]

Fig. 3: Accelerator microarchitecture.

One-to-all scatter. In Fig. 3(a), buffer_load function is
executed to read in data from DRAM using AXI protocol.
As shown in Fig. 4, a common way to do this in HLS is
either using memcpy (line 2) or in a fully pipelined loop
(lines 3-6) to enable burst read. We observe that when we
increase NumPE, the HLS report gives a constant estimated
clock period for buffer_load, which is not the case in
real layout. First, local_in is partitioned for parallel PE
processing. Each partitioned bank (BRAM or FF) is routed to
close to the corresponding PE logic, which results in scattered
distribution of local buffers. We show the layout of a scatter
pattern in a real application in Fig. 5(a). The yellow area
highlights on-chip input buffers which span the whole chip.
The white arrows show the wires connecting AXI read data
port (with high fan-out) to buffers. Since HLS optimistically
estimates the function delay without considering wire delay
and schedule data from the AXI read port to one BRAM bank
every clock cycle, the highlight wire is supposed to switch

every clock cycle, and this is one cause of the critical path.
All-to-one gather. Fig. 3(a) shows the buffer_store
module connecting partitioned buffer banks and the AXI write
port. In order to select the data from a particular bank in one
cycle, A NumPE-to-1 multiplexer (MUX) is generated. We
highlight buffer_store in violet and MUX logic in yellow
in an accelerator layout shown in Fig. 5(b). Similarly, long
wires from partitioned storage banks to the AXI port through
distributed MUX are the cause of long interconnect delay.
One-to-all broadcast. As distinct PEs span a large area,
they incur long wires to broadcast data to computation logic
directly (bc_in_compute), e.g., matrix A is broadcast to
multiplier-accumulators in matrix-multiplier [13]) or to local
copies of shared data within each PE (bc_by_copy), e.g.,
Advanced Encryption Standard (AES) [14] broadcasts a shared
key to all processing elements that perform encryption tasks
independently.
All-to-one reduce. Reduce is a common operation that returns
a single value by combining an array of input. One example is
the string matching application KMP to count the number of a
certain word found in a string, where different string matching
engines need to accumulate their results to get the final count.

We show architecture of broadcast and reduce in Fig. 3(b)(c)
and baseline code in Fig. 6. Layout of broadcast wires are
similar to those in scatter and reduce as in gather patterns.

1 void buffer_load(int local_in[NumPE][], int* global_in) {
2 // memcpy(local_in, global_in, BUF_IN_SIZE);// burst read
3 for(int i = 0; i < NumPE; i++)
4 for(int j = 0; j < BUF_IN_PER_PE; j++) { // for each PE
5 #pragma HLS pipeline II = 1
6 local_in[i][j] = global_in[i*BUF_IN_PER_PE + j];}
7 }
8 void buffer_store(int* global_out, int local_out[NumPE][]) {
9 memcpy(global_out, local_out, BUF_OUT_SIZE);

10 // for loop (similar to buffer_load, not shown)
11 }

Fig. 4: HLS baseline buffer load and store.

(a) Scatter pattern (b) Gather pattern

Fig. 5: Layout of accelerator architecture.

The four patterns are common and appear in most accelerator
designs. As shown in Table I, we have implemented several
accelerators from a variety of domains of applications and
reported location of the critical path in the baseline designs.
Except NW and VITERBI, where critical paths lie in the
computation PEs, all the other designs have critical paths that
result from the four patterns.
TABLE I: Benchmarks and Achilles’s heel patterns in baseline designs.

Benchmark Domain Scatter Gather Broadcast Reduce
AES Encryption X? X? X
FFT Signal X X?
GEMM Algebra X X? X?
KMP String X X X?
NW Bioinfo. X X
SPMV Algebra X X? X
STENCIL Image X X? X
VITERBI DP X X

Checkmark X represents the design has the pattern.
A star ? represents that a critical path lies in the pattern.
For broadcast, GEMM uses bc in compute while others use bc by copy.

2

Author Copy. Personal Research Use Only. FCCM’18 Latte

1 // broadcast_in_compute omit here due to space limit
2 // broadcast_by_copy defined
3 void bc_by_copy(int local_key[NumPE][], int* global_key) {
4 memcpy(local_key[0], global_key, KEY_SIZE);// to 1st copy
5 for(int j = 0; j < KEY_SIZE; j++){
6 #pragma HLS pipeline II = 1
7 for(int i = 1; i < NumPE; i++){
8 #pragma HLS unroll
9 // 1st copy to the rest

10 local_key[i][j] = local_key[0][j];}}
11 }
12 // each element in int* n_match is from a PE
13 void reduce(int &final_match, int n_match[NumPE]) {
14 for(int i = 0; i < NumPE; i++){
15 #pragma HLS pipeline II = 1
16 final_match += n_match[i];}
17 }// other reduction operations are similar

Fig. 6: HLS baseline broadcast and reduce.

III. LATTE MICROARCHITECTURE

In order to reduce the wire delay in the critical paths in the
patterns while keeping the computation throughput, i.e., not
changing NumPE, we introduce the pipelined transfer controller
(PTC), the main component of the Latte microarchitecture in
the data path.

A. Pipelined Transfer Controller (PTC)

0 1 ... gs-1

PTC#0

... 2gs-1

PTC#1

gs+1gs ... NumPE-1

PTC#GN-1

...
NumPE-

gs

...

...
PE PE ... PEPE PE ... PE

FIFO_IN FIFO_OUT

local_in
[GN][GS][...]

from AXI

to PEs to PEs

tmpfifo #i

PTC #i

local_in[#i][GS][BUF_IN_PER_PE]

cnt > C

cnt <= C

tmpfifo #i

PTC #i

local_in[#i][GS][BUF_IN_PER_PE]

cnt > C

cnt <= C

(a) PTC chain in scatter

(b) intermediate ptc_in #0..GN-2 (c) boundary ptc_in #GN-1

tmp

PTC #GN-1

local_in[#i][GS][BUF_IN_PER_PE]

tmp

PTC #GN-1

local_in[#i][GS][BUF_IN_PER_PE]

tmp

PTC #GN-1

local_in[#i][GS][BUF_IN_PER_PE]

AXI to PTC #i+1

fifo #i fifo #i+1

PTC put

Fig. 7: Microarchitecture of PTC in scatter.

Fig. 7(a) shows the microarchitecture of PTC chains in a
scatter pattern. PTCs are chained in a linear fashion through
FIFOs, and each PTC connects to a local set of buffers in PEs
to constrain the wire delay. We denote the local set size as
group size GS and number of sets as group number GN. The cor-
responding HLS implementation is also presented in Fig 8. To
access local_in from different sets in parallel, we first rede-
fine it as local_in[GN][GS][BUF_IN_PER_SIZE](line
2). PTCs are chained using FIFOs (hls::stream), and a
dataflow pipeline (line 5) is applied to enable function pipeline
in the PTC modules defined below (lines 7-10). There are
three types of PTCs: ptc_put, intermediate and boundary
ptc_in. In ptc_put (lines 13-17), it reads in data from
AXI in a fully pipelined loop and writes to the first FIFO.
Intermediate ptc_in reads in data from the previous PTC
through FIFO. It first writes to local set of PE buffers and then
writes the rest to the next FIFO (lines 18-33), as shown in
Fig 7(b). Similarly, Fig 7(c) shows boundary ptc_in, where
it reads data from the last FIFO and writes all the data to a
local set of PE buffers.

In addition, we show the microarchitecture of the PTC chain
in gather pattern in Fig. 9(a). Similarly, there are three types of
PTC: boundary ptc_out (Fig. 9(b)), intermediate ptc_out
(Fig. 9(c)) and ptc_get. The modules are similar to those in
scatter with a difference in the opposite data transfer direction.

The microarchitectures of PTC broadcast and reduce patterns
are similar to those for scatter and gather, which we leave out
due to the space limitation. PTC is somewhat similar to the idea
of multi-cycle communication in the MCAS HLS system [15].

1 #include <hls_stream.h>
2 int local_in[GN][GS][BUF_IN_PER_PE]; // redef.
3 void PTC_load(
4 int local_in[GN][GS][], int* global_in) {
5 #pragma HLS dataflow
6 hls::stream<int> fifo[GN];// FIFOs, in Fig. 7a
7 ptc_put(global_in, fifo[0]);
8 for(int i = 0; i < GN-2; i++){
9 ptc_in(fifo[i], fifo[i+1], local_in[i], GN-1-i);}

10 ptc_in(fifo[GN-1], local_in[GN-1]);
11 }
12 void ptc_put(int* global_in, stream<int> &fifo){
13 for (int i=0; i<NumPE; i++)
14 for(int j = 0; j < BUF_IN_PER_PE; j++){
15 #pragma HLS pipeline
16 fifo << global_buf[i*BUF_IN_PER_PE+j];}
17 }
18 void ptc_in(// #0..GN-2 ptc_in, in Fig. 7b
19 stream<int>&fifo_in, stream<int> &fifo_out,
20 int local_set[GS][BUF_IN_PER_PE], int todo){
21 int i, j, k; int tmp;
22 for(i= 0; i < GS; i++){ // to local first
23 for(j = 0; j < BUF_IN_PER_PE; j++){
24 tmp = fifo_in.read();
25 local_set[i][j] = tmp;
26 } }
27 for(k=0; k < todo; k++) // to next ptc
28 for(i= 0; i < GS; i++){
29 for(j = 0; j < BUF_IN_PER_PE; j++){
30 tmp = fifo_in.read();
31 fifo_out.write(tmp);
32 } }
33 }

Fig. 8: Code snippet of HLS implementation for PTC in scatter.

local_out[0][GS][BUF_OUT_PER_PE]local_out[0][GS][BUF_OUT_PER_PE]local_out[0][GS][BUF_OUT_PER_PE] local_out[#i][GS][BUF_OUT_PER_PE]local_out[#i][GS][BUF_OUT_PER_PE]

0 1 ... gs-1 ... 2gs-1gs+1gs ... NumPE-1...
NumPE-

gs...

(a) PTC chain in gather

PE PE ... PEPE PE ... PE from PEsPE PE ... PE from PEs from PEs

MUXMUXMUX
to AXI

PTC#0 PTC#1 PTC#GN-1...FIFO_IN FIFO_OUT
MUXMUXMUX MUXMUXMUX

MUXMUX MUXMUX

cnt <= C

cnt > C

local_out
[GN][GS][..]

PTC get

(b) boundary ptc_out #0 (c) intermediate ptc_out #1..GN-1

tmp

PTC #0

tmp

PTC #i to PTC #i+1
fifo #0 fifo #i fifo #i-1

0 1 ... gs-1 ... 2gs-1gs+1gs ... NumPE-1...
NumPE-

gs...

(a) PTC chain in gather

PE PE ... PE from PEs from PEs

MUX
to AXI

PTC#0 PTC#1 PTC#GN-1...FIFO_IN FIFO_OUT
MUX MUX

MUX MUX

cnt <= C

cnt > C

local_out
[GN][GS][..]

PTC get

(b) boundary ptc_out #0 (c) intermediate ptc_out #1..GN-1

tmp

PTC #0

tmp

PTC #i to PTC #i+1
fifo #0 fifo #i fifo #i-1

Fig. 9: Microarchitecture of PTC in gather.

It is possible to manually implement the Latte microarchi-
tecture in HLS. However, the implementation expands over
260 lines of code (LOC), which is 10× more than the baseline
code shown in Fig. 4 and Fig. 6. To relieve the burden
of manual programming effort in implementing Latte, we
provide an automation framework that reduces the 260-LOC
implementation to simply a few directives.

B. Automation Framework

We implement a semiautomatic framework to make use of
Latte by having a user-written HLS kernel with simple Latte
pragmas. The Latte pragma indicates the on-chip buffer with
the pattern to be optimized. For example, Fig. 10 presents an
example of using a Latte pragma to enable scatter pattern with
PTCs for the on-chip buffer from Fig. 2.

1 #pragma latte scatter var="local_in_B"
2 int local_in_B[NumPE][BUF_IN_PER_PE];

Fig. 10: An example of Latte pragma.

After parsing the kernel code with pragmas, we perform
code analysis by leveraging the ROSE compiler infrastruc-
ture [16] to identify the kernel structure, array types and sizes.
Subsequently, we apply predefined HLS function templates
of Latte by performing source-to-source code transformation.
Corresponding optimization, such as memory partitioning,
memory coalesce [17], and so forth, are applied as well. We
implement a distributed runtime system that launches multiple

3

Author Copy. Personal Research Use Only. FCCM’18 Latte

Amazon EC2 [18] instances for exploring the PTC group size
with Vivado HLS [1] in parallel to determine the best design
configuration. Note that since we only search the group size
that is a divisor of the PE number, the design space is small
enough to be fully explored.

IV. EXPERIMENTAL EVALUATION

We use Alpha Data ADM-PCIE-7V3 [19] as an evaluation
FPGA board (Virtex-7 XC7VX690T) and Xilinx Vivado HLS,
SDAccel 2017.2 [1] for synthesis. For each benchmark listed
in Table I, we implement the baseline design and scale out
N times until fully utilizing the on-chip resource or failing
to route. We then obtain the baseline frequency as F and
baseline area as A. Then for N of an application, we choose
GS as divisors of N. For each GS, Latte optimizations are
applied on all existing patterns, and frequency is reported
as FGS , area as AGS . Thus, the performance ratio of the
Latte optimized design and baseline is expressed as FGS/F ,
performance-to-area (P2A) ratio as FGS/AGS

F/A = FGS

F /AGS

A (in
terms of latency, each PTC introduces one extra cycle, which
is negligible compared to the cycle number of the original
design). Latte enables design space exploration for both ratios
as shown in Fig. 11 for GEMM. As can be seen, GEMM achieves
the optimal performance when GS is four, which has 227 MHz
operating frequency with 35% LUT overhead. In addition, P2A
optimal design is identified when GS is 16, achieving 207 MHz
with only 8% area overhead. On the other hand, we can observe
the performance degradation when GS decreases from four to
one. The reason is that the critical path has been moved from
data transfer to PEs when GS is four, and further reducing the
data transfer wire delay will not improve the performance. This
illustrates the motivation for selecting a suitable GS instead of
always setting GS to one.

0
0.4
0.8
1.2
1.6

2

1 2 4 8 16 32 64 128 256 512

Perf

Perf/Area

GS

ra
ti

o

GS=4, 1.72x Perf,
1.27x Perf/Area,

1.35x Area

GS= 16, 1.58x Perf,
1.46x Perf/Area,

1.08x Area

Fig. 11: Performance and P2A ratio in GEMM with 512 PEs.

In addition, we report the resource utilization and operating
frequency for baseline designs under N PEs (ori.) and the
corresponding Latte designs with optimal P2A GS (latte)
in Table II. The Latte optimized design improves timing over
baseline HLS design by 1.50× with 3.2% LUT, 5.1% FF
overhead on average. For FFT, it even achieves 2.66× with
only 2.7% LUT and 5.1% FF overhead. Even for designs such
as NW and VITERBI where critical paths in baseline lie in PEs,
the Latte optimized design is still beneficial. A possible reason
is that the Latte design helps the placement of PEs, which
helps routing within PEs. In summary, the average frequency
has been improved from 120 MHz to 181 MHz.

Finally, the overall frequency to area in Latte designs are
shown in Fig. 12. It achieves 200 MHz on 61% chip area, and
174 MHz on 90%, which helps greatly in frequency degradation.
We also show the layout of PTCs in gather pattern in FFT with
64 PEs and 16 PTCs in Fig 13, where PTCs are connected in
linear fashion and scale much better.

V. CONCLUSION AND FUTURE WORK

In this paper we summarize four common collective commu-
nication and computation patterns (i.e., scatter, gather, broadcast

TABLE II: Baseline design vs Latte optimized design.
Bench. type N / GS LUT FF DSP BRAM Freq.
AES ori. 320 / 50.4% 17.3% 0.1% 76.3% 127

latte / 32 1.017 1.009 1 1 165, 1.30x
FFT ori. 64 / 50.5% 23.2% 88.9% 78.5% 57

latte / 4 1.027 1.056 1 1 152, 2.66x
GEMM ori. 512 / 37.8% 29.6% 71.1% 69.7% 131

latte / 16 1.044 0.962 1 1 207, 1.58x
KMP ori. 96 / 5.0% 3.0% 0.2% 52.3% 126

latte / 24 1.045 1.174 1 1 195, 1.54x
NW ori. 160 / 65.1% 50.7% 0.0% 78.2% 174

latte / 80 0.995 0.997 1 1 177, 1.02x
SPMV ori. 48 / 19.1% 11.9% 18.9% 93.2% 160

latte / 6 1.029 1.037 1 1 192, 1.20x
STENCIL ori. 64 / 12.9% 10.9% 48.1% 87.1% 141

latte / 16 1.094 1.139 1 1 188, 1.33x
VITERBI ori. 192 / 72.0% 25.7% 10.8% 39.3% 155

latte / 12 1.008 1.031 1 1 168, 1.08x
Average ori. / NA NA NA NA 120

latte / 1.032 1.051 1 1 181, 1.50x

fr
eq

u
en

cy
 (

M
H

z)

y = -86.289x + 252.49

0

50

100

150

200

250

300

0% 20% 40% 60% 80% 100% 120%

Latte

(61%, 200MHz)
(90%, 174MHz)

(88%,152MHz)A’:

res. util.
120%

Fig. 12: Freq. degradation much less
severe in Latte optimized designs.

ptc_1
ptc_2

ptc_3
ptc_0

ptc_4

ptc_5ptc_6

ptc_7ptc_8

ptc_9

ptc_10

ptc_11

ptc_12

ptc_13

ptc_14 ptc_15

ptc_get

ptc_1
ptc_2

ptc_3
ptc_0

ptc_4

ptc_5ptc_6

ptc_7ptc_8

ptc_9

ptc_10

ptc_11

ptc_12

ptc_13

ptc_14 ptc_15

ptc_get

Fig. 13: PTC layout in
FFT (N=64,GS=4,GN=16).

and reduce) in HLS that generate long interconnects in scaled-
out design and result in degraded frequency. To achieve a
high frequency, we propose the Latte microarchitecture which
features pipeline transfer controllers in the four patterns to
reduce wire delay. We also implement an automated framework
to realize HLS-based Latte implementation with a only few
lines of user-provided derivatives. Experiments show that the
Latte optimized design improves frequency from 120 MHz to
181 MHz with 3.2% LUT, 5.1% FF overhead on average.
Design space exploration on the full system design with
a comprehensive analytical model and customizable PTC
connections other than linear fashion remain as future work.

VI. ACKNOWLEDGMENT

The work is supported by Intel/NSF Innovation Transition
Program (InTrans CCF-1436827) awarded to the UCLA Center
for Domain-Specific Computing and contributions from CDSC
industrial partners Huawei, Fujitsu, NEC, and Samsung.

REFERENCES
[1] Xilinx, “Vivado HLS & SDAccel,” http://www.xilinx.com/.
[2] Intel, “Intel FPGA SDK for OpenCL,” http://www.altera.com/.
[3] Z. Wang et al., “A performance analysis framework for optimizing OpenCL

applications on fpgas,” in HPCA, 2016.
[4] H. R. Zohouri et al., “Evaluating and optimizing OpenCL kernels for high

performance computing with fpgas,” in SC, 2016.
[5] S. Wang et al., “FlexCL: An analytical performance model for OpenCL workloads

on flexible fpgas,” in DAC, 2017.
[6] A. Tavakkoli and D. B. Thomas, “Low-latency option pricing using systolic

binomial trees,” in FPT, 2014.
[7] M. Snir, MPI–the Complete Reference: the MPI core. MIT press, 1998, vol. 1.
[8] R. Chen et al., “Energy efficient parameterized fft architecture,” in FPL, 2013.
[9] L. D. Tucci et al., “Architectural optimizations for high performance and energy

efficient smith-waterman implementation on fpgas using opencl,” in DATE, 2017.
[10] E. Rucci et al., “Smith-waterman protein search with opencl on an fpga,” in IEEE

Trustcom/BigDataSE/ISPA, 2015.
[11] J. Zhang, P. Chow, and H. Liu, “Cordic-based enhanced systolic array architecture

for qr decomposition,” TRETS, 2015.
[12] W. Luk, G. Jones, and M. Sheeran, “Computer-based tools for regular array design,”

in Systolic Array Processors, 1989.
[13] P. Zhou et al., “Energy efficiency of full pipelining: A case study for matrix

multiplication,” in FCCM, 2016.
[14] J. Daemen and V. Rijmen, The design of Rijndael: AES-the advanced encryption

standard. Springer Science & Business Media, 2013.
[15] J. Cong, Y. Fan, G. Han, X. Yang, and Z. Zhang, “Architecture and synthesis for

on-chip multicycle communication,” TCAD, pp. 550–564, April 2004.
[16] “ROSE Compiler Infrastructure,” http://rosecompiler.org/.
[17] J. Cong, P. Wei, C. H. Yu, and P. Zhou, “Bandwidth optimization through on-chip

memory restructuring for hls,” in DAC, 2017.
[18] “Amazon ec2,” https://aws.amazon.com/ec2.
[19] AlphaData, “ADM-PCIE7V3,” https://www.alpha-data.com/pdfs/adm-pcie-7v3.pdf.

4

