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Abstract—In conventional Hadoop MapReduce applications,
I/O used to play a heavy role in the overall system performance.
More recently, a study from the Apache Spark community—
state-of-the-art in-memory cluster computing framework—
reports that I/O is no longer the bottleneck and has a marginal
performance impact on applications like SQL processing. How-
ever, we observe that simply replacing HDDs with SSDs in a
Spark cluster can have over 10x performance improvement for
certain stages in large-scale production-quality genome process-
ing. Therefore, one key question arises: How does I/O quanti-
tatively impact the performance of today’s big data applications
developed using in-memory cluster computing frameworks like
Apache Spark?

In this paper we select an important yet complex application—
the Spark-based Genome Analysis ToolKit (GATK4)—to guide
our modeling. We first use different combinations of HDDs and
SSDs to measure the I/O impact on GATK4 and change the
CPU core number to discover the relation between computation
and I/O access. By combining with Spark’s underlying imple-
mentations, we further analyze the inherent cause of the above
observations and build our model based on the analysis. Although
we are building upon GATK4, our model maintains generality
to other applications. Experimental results show that we can
achieve a performance prediction error rate within 10% for
typical Spark applications of both iterative and shuffle-heavy
algorithms. Finally, we further extend our model to a broader
area—that of optimal configuration selection in the public cloud.
In Google Cloud, our model enables us to save 38% to 57%
of cost for genome sequencing compared with its recommended
default configurations. Currently, more and more companies are
adopting cloud computing for specific workloads. Our proposed
model can have a huge impact on their choices, while also
enabling them to significantly reduce their costs.

I. INTRODUCTION

Within the past decade, there has been great success in
programming frameworks that support efficient development
and deployment of large-scale applications in datacenters.
Examples include the pioneering MapReduce framework [1]
initially proposed by Google, the open-source Hadoop MapRe-
duce framework [2], and the more recent Apache Spark
framework that improves the performance of Hadoop by up to
100x through in-memory cluster computing [3]. Due to its high
performance efficiency, Spark has attracted increased attention
from both academia and industry.

In such big data computing frameworks, I/O used to play
an important role in system performance, and it attracted
a significant amount of research [4, 5, 6, 7]. For example,
Kambatla et al. reports in [4] that SSDs can deliver up
to 70% performance improvement for Hadoop MapReduce
workloads. On the other hand, a recent work [5] from the
Apache Spark community claims that eliminating I/O accesses
in Spark SQL processing workloads can reduce job completion
time by a median of at most 19%. Thus, I/O tends to no
longer be the bottleneck for the Spark in-memory computing
framework. Such studies present quite different implications

of the I/O impact based on their application domains and
hardware resources; this often confuses users. As a result, the
following key question arises: How does I/O impact the big
data application performance running on top of in-memory
cluster computing frameworks like Apache Spark?

Having a quantitative understanding of a complex dis-
tributed system like Spark is not trivial. Unfortunately, pre-
vious studies in modeling Spark performance [6, 8, 9] usually
overlook the impact of I/O in their models. To better answer
the above question, we first measure the performance impact
of I/O on Spark by conducting an in-depth case study on
the Spark-based production-quality Genome Analysis ToolKit
(GATK4) [10]. GATK4 is one of the most important tools
in computational genomics, and it has great potential for
providing personalized medicine [11]. Since it involves various
types of Spark operations, it is typical and complex enough
for our motivation study. A brief introduction to Apache Spark
and the GATK4 application will be presented in Section II.

Different from [5], we observe that I/O can still play a
heavy role—even in the in-memory computing framework
of Spark. In addition to the HDFS read and write for the
input and output data which introduce I/O access, we make
three other observations; these are analyzed in Section III.
First, to avoid the time-consuming recomputation, certain
RDD (resilient distributed dataset) operations like groupByKey
will perform shuffle write/read to write/read intermediate data
to/from storage between different Spark stages. Second, there
is usually some non-cached intermediate data (RDD) as it
is too large to be totally put into memory. For example, for
GATK4, to cache a 30x coverage whole genome intermediate
data, at least 3.2TB total CPU memory is required. It requires
more memory for higher coverage genome inputs. Third,
effective I/O bandwidth differs under various data request
sizes for different I/O devices including HDD and SSD. For
example, the bandwidth difference between HDD and SSD
for the HDFS read operation in GATK4 is 3.7x; however, it is
32x for shuffle read operation. In that way, performance under
HDD and SSD varies a lot for some Spark stages while not
much for others.

To gain more insights into how I/O impacts the performance
of Spark applications, we propose a generic I/O-aware analyti-
cal model to reason the underlying behavior of different Spark
RDD operations and model their performance in Section IV. In
this model, we analytically combine all the following factors
together, which often have been overlooked in past studies.

1. We incorporate the effective I/O bandwidths under different
data block sizes during different RDD accesses, including
HDFS read/write, shuffle read/write, and persist read/write.

2. We incorporate the I/O bandwidth contention from different
CPU cores, and quantify the break point (i.e., number of
CPU cores) after which the I/O bandwidth is saturated.
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3. We also incorporate the overlap between the CPU computa-
tion and I/O accesses from different data partitions, where
we assume a simple but effective pipeline execution model.

To validate the accuracy of our proposed I/O-aware ana-
lytical model, we choose a set of representative Spark appli-
cations, including GATK4 and five other typical applications
of iterative algorithms and shuffle-heavy algorithms. As de-
tailed in Section V, experimental results show that our model
achieves a performance prediction error rate within 10%, and
well explains the runtime behavior of different stages in those
applications.

This quantitative model enables us to better understand the
performance of Spark applications for further optimizations.
Moreover, our model can also be applied in the public cloud.
In Section VI we conduct a case study to use our model to
optimize the cost of genome sequencing in Google Cloud,
where the cost of execution can be modeled as Cost =
f (CoreNum, DiskTypes, DiskSizeHDFS,DiskSizeSpark Local,Time).
Using the basic application profile and platform configura-
tion (CoreNum, DiskTypes, DiskSizeHDFS,DiskSizeSpark Local),
our model can derive the application execution Time. There-
fore, we can explore the platform configuration space to find
the optimal one with the minimum cost. Experimental results
demonstrate that we can save 38% to 57% of cost compared
to default configurations recommended by Spark [12] and
Cloudera [13].

Although we only discuss the above usages due to space
limits, our model can be utilized for other purposes as well. For
example, in a shared cluster environment with a job scheduler,
our performance prediction model can allow the scheduler to
know ahead the approximating job execution time and thus
enable better job scheduling with less job waiting time.

In summary, this paper makes the following contributions:

1. A quantitative performance analysis on the Spark-based
production-quality genome analysis toolkit.

2. An accurate I/O-aware performance analytic model for a
broad set of Spark applications.

3. A model-driven cost optimization study for genome se-
quencing in the public Google Cloud.

In addition, we open source our toolset Doppio1 [14],
incorporating the I/O-aware model to the community.

II. BACKGROUND

A. Apache Spark

Apache Spark [3] is a widely used in-memory large-scale
data processing framework. Spark exposes a programming
model to big data application developers based on resilient
distributed datasets (RDDs). The RDD abstraction provides a
series of transformations (e.g., map, filter) and actions (e.g.,
collect, count) that enable lazy evaluation of data partitions
over a cluster of nodes. By caching RDDs in memory and
thus reducing I/O accesses, Spark often achieves significant
performance improvement over the Hadoop MapReduce [2]
framework.

A typical Spark application launches its driver program on a
master node and then distributes its tasks (data partitions) into
a cluster of slave/worker nodes for parallel processing. Each
slave node will read its data partitions from a distributed file

1Doppio is the anagram for I/O-aware Performance analysis, moDeling and
OPtimization for in-memory computing framework.

system (e.g., HDFS [15]) and perform parallel computations.
In addition, each slave node in Spark has its local storage
directory (spark.local.dir) to store data, including RDDs, that
persist on disk specified by a user program, or intermediate
data [16, 17] preserved by the Spark framework. In the
following we will interchangeably use the term Spark Local
to refer to this local directory.

B. Genome Analysis ToolKit (GATK4)

Building a performance model for a complex distributed
system like Spark is not trivial. Therefore, we first analyze
a realistic and complex Spark application—GATK4—and use
its analyzing result to guide our modeling.

GATK4 is a Spark-based production-quality genome analy-
sis toolkit widely used in computational genomics. It includes
three major stages: 1) MarkDuplicate (MD), which groups
reads (small DNA fragments from the biochemical sequencing
machine) by alignment information and marking duplicate
reads; 2) BaseRecalibrator (BR), which builds a statistical
model on how to update the quality scores of the aligned reads;
and 3) SaveAsNewAPIHadoopFile (SF), which updates the
quality scores and saves the analysis-ready reads into storage.
In addition to the genome reads in the BAM file [18, 19],
GATK4 also takes two other input files: 1) the VCF file that
contains all known genome variations, and 2) the reference
genome file to which all the genome reads are aligned.
The output of GATK4 can be used to conduct genome-wide
association studies (GWAS, also known as population studies)
to discover unknown genome variations. The main data flow
of GATK4 in the Spark perspective is shown in Fig. 1.

C. Experiment Setup

Table I describes the system software and hardware configu-
ration for each slave node. Table II describes the default Spark
and HDFS configuration in our cluster setting unless otherwise
specified. Although we use fixed Spark configurations here,
out proposed model can work for other configurations as well.
We will revisit this in Section IV.

TABLE I: Software and hardware configuration

Linux kernel 4.4.0-104-generic
System CPU 2×Intel Xeon CPU E5-2699 v3 = 36 cores

RAM size 128 GB
Network 10Gb/s
Model Western Digital 4000FYYZ-01UL1B2

HDD RPM 7200
Capacity 4 TB

max sectors kb 512 KB
Model SAMSUNG MZ7LM240HCGR-0E003

SSD Capacity 240 GB
max sectors kb 512 KB

TABLE II: Spark and HDFS configuration

version spark-1.6.2
Spark SPARK WORKER CORES 36

SPARK WORKER MEMORY 90 GB
version hadoop-2.6.0

HDFS dfs.blocksize 128 MB
dfs.replication 2

JAVA version jdk 1.8.0 73

As an example, we process a single whole human genome
with 30x coverage sampled from a patient with breast cancer
(HCC1954 [20]). This genome contains 500 million read pairs,
each read with around 101 nucleotides. This input genome
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Fig. 1: The Spark RDD flow of GATK4 pipeline.
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Fig. 2: Runtime for different stages in GATK4 using 500M read
pairs input in four-node cluster, each with 36 executor cores.
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Fig. 3: Runtime for 2HDD and 2SSD cases when the number of CPU
cores per node P = 12, 24, 36.

in a compressed BAM file is around 122GB, and the output
analysis-ready genome file (also in compressed BAM format)
is around 166GB. To measure the impact of I/O on the GATK4
performance, we test its performance under four different
HDD/SSD configurations for each node, as summarized below.

TABLE III: Hybrid configurations of HDDs and SSDs

Configuration 1 2 3 4

HDFS 1 SSD 1 HDD 1 SSD 1 HDD
Local (spark.local.dir) 1 SSD 1 SSD 1 HDD 1 HDD

We leave the description of five other typical Spark appli-
cations in Section V.

III. GATK4 PERFORMANCE ANALYSIS

Using the Spark-based GATK4 as a motivational example,
we first measure the impact of I/O on its performance under
different execution stages with different RDD operations, and
different numbers of CPU cores. After that, we summarize
the observations that motivate us to build an I/O-aware perfor-
mance analytical model for Spark applications. A four-node
small cluster (one for master) is used in this example.

A. GATK4 Performance Profile Results

We break down the I/O impact into different GATK4 stages
using 500M read pairs input and 36 Spark executor cores. As
shown in Fig. 2, we find that the performance impact varies
considerably in different stages with different RDD operations.
The I/O data sizes for different stages are shown in Table IV.

TABLE IV: I/O data size (GB) in different GATK4 stages

I/O (GB) HDFS read Shuffle write Shuffle read HDFS write

MD 122 334 0 0

BR 122 0 334 0

SF 122 0 334 166

1. Changing the HDFS folder from HDD to SSD has no
performance gain for the MD stage (though MD has the
same I/O data access size as the BR stage according to
Table IV), up to a 30% and 90% performance gain for the
BR and SF stages, respectively.

2. The sensitivity to Spark Local bandwidth varies in the dif-
ferent stages. It is interesting that the major time-consuming
stage changes from BR to SF and BR when switching Spark
Local from SSD to HDD.

3. Spark Local is much more IO-sensitive than HDFS.

Finally, we evaluate the I/O impact on different stages under
different numbers of CPU cores, using 500M read pairs input.
As shown in Fig. 3, when the number of cores (P) increases
from 12 to 36, the runtime for the BR and SF stages decreases
in the 2SSD configuration but stays the same in the 2HDD
configuration. For the MD stage, the runtime almost stays
the same when P changes in the 2SSD as well as 2HDD
configurations. We observe that when there are more cores,
SSDs might achieve a larger performance gain than HDDs.

As observed above, I/O still plays a heavy role in the
GATK4 performance. As we will demonstrate in Section V-B,
even in typical Spark iterative algorithms where intermediate
data is cached in memory, I/O can play an important role with
a small iteration number (less than 100). The performance gap
between HDD and SSD can be as large as 2x.

B. Analysis of I/O-intensive Operations

After a detailed analysis, we find there are two other
major I/O-intensive operations in GATK4, in addition to the
HDFS read and write of the input and output file. These two
operations are discussed in detail in the following.

1) Shuffle-Heavy RDD Operations: Certain RDD opera-
tions in Spark, such as groupByKey() and repartition(), involve
very time-consuming shuffle operations. During shuffling,
mappers write all the intermediate data into the Spark Local.
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Fig. 4: An illustration of the groupByKey operation.

Later, reducers read those intermediate results from the map-
pers’ local storage [16, 17]. Such RDD operations involve a
significant amount of I/O accesses.

Fig. 4 presents an overview of the groupByKey() operation
used in Spark, which has two phases: ShuffleWrite and Shuf-
fleRead. To redistribute and group the data based on its key, the
ShuffleWrite phase generates map tasks to sort the data based
on its key and spills the output from the mapper side onto
Spark local storage after data serialization and compression.
The ShuffleRead phase generates reduce tasks to collect and
aggregate data from all the mappers. In this phase, data is
read from the Spark local storage and network, and then de-
compressed and deserialized. ShuffleRead is the phase where
both disk and network are involved, and data redistribution
among different data partitions occurs. In GATK4, the MD and
BR stages are separated by the ShuffleWrite and ShuffleRead
phases as shown in Fig. 1. Though shuffle-related operations
also involve network communication, the 10Gbps network
usually is not the bottleneck of Spark applications [5]. Hence,
we mainly focus on the analysis and modeling of the I/O part.

2) Large RDDs NOT Cacheable in Memory: Another major
source of I/O access comes from multiple references to large
RDDs that consume a large amount of memory and cannot
be cached in memory. One example is the UnionRDD marke-
dReads in GATK4, which is used by both the BR and SF, as
shown in Fig. 1. Since this RDD is not cached in the memory,
each time the program uses and performs actions on it, it will
be 1) read from the persist storage (Spark Local) if there is a
persist write for this RDD, or otherwise 2) recomputed using
input data from either the HDFS or Spark Local.

To explain why this UnionRDD cannot be cached in mem-
ory in GATK4, we change the original GATK4 to cache it for
a small input (compressed, serialized data), and then measure
its runtime memory consumption (decompressed, deserialized
data). Based on this information, we find that caching this
single UnionRDD for the whole genome with 122GB input
requires around 870GB memory space. Assuming that around
40% of the entire Spark executor memory is used as storage
memory to cache this UnionRDD, the total Spark memory
required would be around 2.18TB. Each server that we use has
128GB RAM, and if we allocate 90GB for the Spark executor,
we need 25 slave nodes in total, which is quite expensive for
practical usage. Therefore, such large RDDs can not be fully
cached in memory and need to be persisted in disk or simply
be rebuilt from input anytime that a program uses them. Both
of these approaches will incur a large amount of I/O access.

C. Effective I/O Bandwidth under Various Data Request Sizes

As previously analyzed, the big performance gap of different
storage configurations is mainly caused by switching the Spark
Local from HDD to SSD. We find that the effective I/O
bandwidth in the shuffle read stage has up to a 32x gap for

SSD and HDD, which is much larger than the 3.7x gap of their
peak bandwidths. In this section we use 36 Spark executor
cores and the whole genome input unless otherwise specified.

After a detailed analysis, we find that unlike the HDFS
read/write that usually involves large data block accesses
(e.g., 128MB), shuffle read incurs many small block size I/O
accesses, where HDDs have a much lower effective bandwidth
than SSDs. As a result, replacing a HDD with a SSD for the
Spark Local for BR and SF stages can achieve up to 3.7x and
9.5x performance gains, respectively. In particular, we have
the following observations and analysis.

1) Effective I/O Bandwidth on HDD and SSD: We use
fio [21] to test the input/output operations-per-second (IOPS)
and effective bandwidth on different read block sizes for HDD
and SSD to simulate the shuffle read operation and HDFS read
operation in Spark. As shown in Fig. 5a and 5b, when block
size is 30KB, the average bandwidth is 15MB/s for HDD and
480MB/s for SSD, resulting a 32x bandwidth gap. For such
a small data access size, shuffle read I/O in HDD becomes
the bottleneck of the system, while shuffle read I/O in SSD
does not. The bandwidth gap between HDD and SSD is higher
when the block size gets smaller. When the block size is 4KB,
the gap can be as high as 181x. When the block size is 128MB
(default in HDFS block size), the gap is only around 3.7x.

2) Why Shuffle Read Accesses Small Data Blocks: Now we
analyze why shuffle read involves numerous small data block
accesses. As shown in Fig. 4, assume the mapper side has
M partitions. There are M local output files that are indexed
with all the reducer IDs. On the reducer side, assume there
are R tasks. Each reducer reads shuffle data indexed with its
own reducer ID from M separate files in the mapper side, and
dynamically merges the data. To fit the data read by each
reducer in memory for use in later RDD operations (e.g.,
unionRDD in GATK4), there is usually a fixed data size for
each reducer (e.g., each reducer in GATK4 reads 27MB shuffle
data). Since the fixed amount of data in each reducer comes
from M mapper files, when M is large it will incur a large
amount of small block size I/O accesses.

In GATK4, the number of mappers M is determined by the
partition number of the RDD initialReads as shown in Fig. 1,
i.e., the number of HDFS blocks of the input HDFS file. When
the input is a whole genome, M = 122GB*1024(MB/GB) /
128(MB/HDFS block) = 973. The number of reducers R is
set so that each reducer task reads in 27MB shuffle data as
tuned in the original GATK4. On average, each reducer reads
around 27MB / 973 = 30KB data from each mapper. We also
use iostat to measure the average I/O request size (in sectors,
512B per sector) in the BR and SG; the average request size is
60, which corresponds to the 30KB (≈512B×60) block size.

3) Shuffle Performance Analysis: According to Fig. 5a and
5b, the HDD small block access bandwidth is only 15MB/s,
which also matches the result of iostat. Hence, the time needed
for shuffle read (334GB as in Table IV) is 334 * 1024(MB) / 3 /
15(MB/sec) / 60(sec/min) = 126mins, which perfectly matches
the execution time of both BR and SF shown in Fig. 2. This
further indicates that all computation time is overlapped by
HDD access. One may notice in Table IV and Fig. 4, although
the shuffle data size of MD is exactly the same as BR and SF,
the execution time of MD is much shorter. That is because the
block size of shuffle write is much larger than shuffle read—
about 365MB in this case since mappers write data in sorted
chunks (as described in Section III-B1).
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Fig. 5: Read bandwidths and IOPs for HDD and SSD on different block sizes.
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IV. I/O-AWARE SPARK ANALYTICAL MODEL

To reason and quantify the underlying behavior of Spark
tasks with different RDD operations, we propose an I/O-aware
analytical model that considers the effective I/O bandwidths
under different data request sizes and different numbers of
CPU cores, and the overlap between the CPU computation and
I/O access. For illustration purposes, we use Spark shuffle read
as an example to explain our model, which works similarly
for other I/O or computation-intensive RDD operations.

A. Model Variables Definition

Shown in Fig. 6a, we define the following variables used in
our model.

1. T is the I/O (here, shuffle read) throughput per core when
there is no I/O bandwidth contention. Usually we can test
this T under the SSD configuration using a single core for
the Spark executor. Our example in Figure 6 assumes T =
60MB/s for illustration purposes.

2. t avg is the average execution time of a single task (for
a single data partition). t lat is the initial latency for
pipelined batches of tasks, smaller than t avg.

3. λ is the average time ratio of the entire task execution to
the I/O access. Our example assumes λ = 4.

4. BW is the effective I/O bandwidth under the average data
request size in the I/O operation. Our example assumes BW
= 120MB/s.

5. b = BW
T

is the break point for the number of CPU cores
per node, after which the CPU cores will contend for the

limited I/O bandwidth. In the example shown in Fig. 6a,
b = 2.

6. D is the entire data access size.
7. P is the number of actual launched executor cores per node.
8. N is the number of nodes.
9. M is the number of tasks (data partitions).

B. Different Execution Phases

When we gradually increase P from 1 to the number of
maximum executor cores, there are three phases where the
runtime model and I/O access are different.
P ≤ b: no overlap with I/O and CPU computation. In
this case, I/O is not a bottleneck as the number of executor
cores does not exceed the bandwidth break point. As shown
in Fig. 6a, after a batch of P tasks finish their execution,
another batch of P tasks are launched. Here we only show
two batches of tasks, and there is no overlap with I/O access
(shuffle read) and CPU computation. Therefore, the estimated
runtime formula is M

N∗P
× t avg.

b < P ≤ λ × b: overlap with I/O and CPU computation
within a batch. As shown in Fig. 6b (right column of Fig. 6),
P tasks are launched in a batch. Since b tasks already saturate
the I/O bandwidth, the next b tasks start I/O operations after
the first b tasks finish their I/O operation.2 When P ≤ λ× b,
the first b tasks in the second batch start the I/O operation (and

2In the real case, all P tasks are launched at the same time, where Fig. 6b
draws equivalent sequential I/O access with no I/O contention for easy
illustration.
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also include some computation-like decompression) right after
the first b tasks in the first batch finish, i.e., when the CPU
cores are available. Here we show three batches of tasks. After
an initial latency t lat, each batch of tasks finishes in t avg.
Therefore, the estimated runtime formula is M

N∗P
× t avg +

t lat.
We find that in this case, the estimated runtime formula is

almost the same as that of the P ≤ b case, since the CPU
computation can hide the I/O access. We conclude that the
performance of parallel part (that is the left part of above
formula) scales with the number of CPU cores P as long
as P ≤ λ × b, where I/O does not hit the bandwidth break
point or is hidden by the CPU computation. We can define
B = λ × b, as the turning point where I/O starts to become
a bottleneck.
P > λ × b, i.e., P > B: I/O becomes a bottleneck. As
shown in Fig. 6c, when P increases further, there is more
overlapping of I/O and CPU operations. Since λ×b determines
the maximum parallelism of CPU tasks, if P is larger than that,
it means I/O becomes a bottleneck. In this case, the estimated
runtime formula is D

N×BW
+ t avg, which is determined by

the entire data access size and effective I/O bandwidth. That
is, further increasing the number of CPU cores P does not
help the system performance when P > B.

C. Generic Model

Therefore, our model can be generalized as follows: for each
stage i, its runtime tstage is:

tstage = max (tscale, tread limit, twrite limit),

tscale =
M

N ∗ P
× t avg + δscale

tread limit =
Dread

N ∗BWread

+ δread,

twrite limit =
Dwrite

N ∗BWwrite

+ δwrite

(1)

Here tscale is the execution time when none of the I/O read
and write is a bottleneck (when P < B , tscale is larger
than tread limit and twrite limit), thus tstage = tscale, and its
parallel part scales with N ∗ P . tread limit (twrite limit) is
the I/O read (write) time when it becomes a bottleneck, i.e.,
P > Bread (P > Bwrite). We add a constant δ to each term
to accommodate the linear part of the code. The model is built
for each stage, and for the entire application, the total runtime
is the sum of each stage’s runtime, tapp =

∑
tstage.

Note that our model relates to disk bandwidth rather than
disk number. Thus, it is general enough to support the multi-
disk case. In addition, different hardware platforms or Spark
configurations will lead to different t avg. Therefore, our
model can still correctly capture the execution time.

V. MODEL EVALUATION RESULTS

To demonstrate how to use our I/O-aware model to explain
and predict the runtime behavior of Spark programs, we first
apply it to GATK4 and validate the model accuracy. To
better illustrate the generality of our model, we later apply
it to typical big data applications from SparkBench [22] and
BigDataBench [23]. Our experimental results demonstrate that
our model can predict their performance with an error rate less
than 10%, and can well explain their behaviors under different
configurations. An eleven-node (one for master, ten for slave

nodes) cluster is used for the experiments in this section. We
report the average run time for five runs in the experiment
results and also report error bars with positive and negative
error values.

A. Applying Model to GATK4

1) MD stage: Changing the HDFS folder from an HDD to
an SSD for the MD stage gives no performance gain when P
= 36, as shown in Fig. 2. The HDFS read operation in MD
only occupies a small portion of the task execution time. The
time ratio of the entire task execution over I/O access λ = 12
is already pretty large. Although the break point b is different
for HDD and SSD for HDFS read (4.3 and 16, respectively),
B in both cases is larger than 36, the maximum number of
executor cores per node in our setting.

When using SSD as Spark Local, the runtime is calculated
as t = tscale = M

N∗P
× t avg + δscale. To be noted here, in

Fig. 3 MD stage time does not scale for SSDs. This is not
because the I/O is the bottleneck, it is because the garbage
collection time increases with larger P and dominates the
execution time of MD, which is currently not included in
our model and will be dealt with in future work. When using
HDD as Spark Local, shuffle write becomes the I/O bottleneck,
BWwrite = 100MB/s, B = 10, and runtime does not scale for
P = 12, 24, 36.
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Fig. 7: Comparison of measured runtime (exp) and model predicted
runtime (model) for GATK4 (max and min error bars are also shown).

2) BR and SF Stage: There are two kinds of tasks in the
BR stage. One starts from the RDD nonPrimaryReads that
need HDFS read, with a λ = 1.3; i.e., the CPU computation
time is small compared to the I/O access time. However, since
most read records are filtered out after the filter() function, as
shown in Fig. 1, this task only occupies a small portion of
the total BR execution time. The other task starts from the
shuffle read, and the CPU computation time is long, with a
λ = 20. And this task dominates the BR execution time. Due
to space constraints, we will mainly illustrate the modeling for
the latter task.

We first explain the case when both the Spark Local and
HDFS are set to separate SSDs. For shuffle read, if there is
no I/O contention, each core’s read throughput T is around
60MB/s. And λ, the time ratio of the entire task execution over
shuffle read task time, is 20. The SSD shuffle read bandwidth
BW is around 480MB/s. Thus the break point b = BW

T
= 8.

In this way, the BR stage runtime scales with the number of
executor cores P up to B = 160 cores. This matches well with
the results in Fig. 3: when P increases from 12 to 24 to 36,
the runtime of BR decreases accordingly.

However, when changing the Spark Local to an HDD, where
HDD shuffle read bandwidth for 30KB block size is only
15MB/s, even one core suffers the I/O contention in some
sense, that is, b=1. Compared to the shuffle read time in SSD,
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Fig. 8: Comparison of measured runtime (exp) and model predicted runtime (model) for Logistic Regression (LR).
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Fig. 9: Comparison of measured runtime (exp) and model predicted
runtime (model) for Support Vector Machine (SVM).
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Fig. 10: Comparison of measured runtime (exp) and model predicted
runtime (model) for PageRank (PR).
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Fig. 11: Comparison of measured runtime (exp) and model predicted
runtime (model) for Triangle Count (TC).

ru
n

ti
m

e
 (

m
in

u
te

s)

24

0

20

40

60

80

E
xp

M
o

d
e

l

E
xp

M
o

d
e

l

E
xp

M
o

d
e

l

E
xp

M
o

d
e

l

E
xp

M
o

d
e

l

E
xp

M
o

d
e

l

E
xp

M
o

d
e

l

E
xp

M
o

d
e

l

E
xp

M
o

d
e

l

E
xp

M
o

d
e

l

E
xp

M
o

d
e

l

E
xp

M
o

d
e

l

P = 6 P = 12 P = 24 P = 6 P = 12 P = 24 P = 6 P = 12 P = 24 P = 6 P = 12 P =

24

conf0 conf1 conf2 conf3

newAPIHadoopFile saveAsNewAPIHadoopFile

HDD HDFS

SSD Local

SSD HDFS

SSD Local

HDD HDFS

HDD Local

SSD HDFS

HDD Local

Fig. 12: Comparison of measured runtime (exp) and model predicted
runtime (model) for Terasort (TS).

the shuffle read time in HDD in each core is 4x longer, which
means that λ here is 5. Thus, B = 5; this means the runtime
of BR does not further decrease when P is larger than 5. Based
on the above analysis, there is no performance gap between the
HDD and SSD when P is small. As P > 5, it further increases
the performance gap between the two storage configurations
on BR, as seen in Fig. 3. This also explains how the SF runtime
scales with P. Since in SF λ is smaller, the performance gap
when changing Spark Local from SSD to HDD starts even
earlier than the BR.

3) Model Accuracy Results for GATK4: Fig. 7 presents the
real measurements compared to model predicted runtime for
different stages under different I/O configurations, when there
are ten slave nodes, and P= 6, 12, 24. The average error rate
is less than 6%, which is true for other omitted cases as well.

B. Generality of Our Model: Other Applications

1) Logistic Regression: Logistic Regression in Spark Ml-
lib [24] is a typical iterative machine learning algorithm. It
consists of two stages: dataValidator and iteration. In our
experiment, We take two datasets generated by SparkBench:
1,200 (small) and 4,000 (larger) million examples, each with
20 features. The iteration number is set to 50 in this exper-
iment. For the small dataset, the RDD parsedData generated
from dataValidator can be cached in memory. For the large
dataset, it is too large to be totally cached in memory and will
be put in Spark Local. The sizes of RDD parsedData for the
small and large datasets are 280GB and 990GB respectively.
Results are shown in Fig. 8 with an average error rate of 5.3%.

2) Support Vector Machine: Support Vector Machine [25]
is another typical iterative machine learning algorithm. It con-
sists of three phases: dataValidator, iteration and subtract. Input
dataset has 12 million samples, 1000 features, 1200 partitions.
Iteration number is set to 10, and each iteration reads in 82GB
in-memory cached RDD generated from dataValidator. The
subtract phase incurs shuffle, and total shuffle size is 170GB.
Results are shown in Fig. 9 with an average error rate of 8.4%.

3) PageRank: PageRank [26] in Spark GraphX [27] is an
iterative graph algorithm that ranks the relative importance of
webpages. It consists of three phases: graphLoader, iteration,
and saveAsTextFile. We generate a dataset that has 20 million
vertices, 4800 partitions (other data generator parameters are
set as default). Iteration number is set to 10, and each iteration
reads in cached RDD data from the last iteration and generates
new RDD data for the next iteration to compute. The cached
RDD total size is as large as 420GB, and it is larger than total
executor storage memory space (assume 40% total executor
memory is for storage) and persist in Spark Local. Results are
shown in Fig. 10 with an average error rate of 5.2%.
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4) Triangle Count: Triangle Count [28, 29] in Spark
GraphX is a graph algorithm to count three-vertex small
graphs within a large graph. It consists of two phases:
graphLoader, computeTriangleCount. The computeTriangle-
Count phase will first repartition the graph to canonicalize [30]
the graph so that there are no self loops or duplicated edges and
all edges are oriented, and then compute the triangle count. We
generate a dataset that has 1 million vertices, 2400 partitions.
ComputeTriangleCount phase incurs 49GB in-memory cached
RDD and 396GB total shuffle data. Results are shown in Fig.
11 with an average error rate of 3.6%.

5) Terasort: Terasort in Spark is another shuffle-heavy al-
gorithm. There are two stages in Terasort: newAPIHadoopFile
(NF) and saveAsNewAPIHadoopFile (SF). In the NF stage,
input records are read from HDFS and sorted by ranges, and
then the shuffle data is written to Spark Local. In the SF
stage, each partition reads in the shuffle data that belongs to
its range, sorts the record by key within the range and writes
the output to HDFS. We take one example dataset generated
by SparkBench: it has 10 billion records, with a total size of
930GB data. Results are shown in Fig. 12 with an average
error rate of 3.9%.
Summary: For iterative algorithms, when dataset is small and
cached in memory, runtime difference between HDD and SSD
comes from HDFS read (write), and can be as large as 2x
in LR (Fig 8a). When dataset is large and persist on disk,
runtime difference mainly comes from persist read (write) on
Spark Local in each iteration, as shown in iteration phases for
LR (7.0x in Fig 8b) and PR (2.2x in Fig 10). For iterative
algorithms with shuffle phase and shuffle-heavy algorithms
like Terasort, runtime difference between using HDD and SSD
as Spark Local can be modeled as shown in subtract phases
in SVM (6.2x in Fig 9), TC (6.5x in Fig 11), and Terasort
(2.6x in Fig 12). In summary, our model enables users to
quantitatively analyze and understand application runtimes on
in-memory computing frameworks like Apache Spark.

VI. APPLICATION OF THE PERFORMANCE MODEL—A
CASE STUDY FOR COST OPTIMIZATION IN PUBLIC CLOUD

As reported by Broad Institute in 2017, 17 TB of new
genome data is generated per day, and in total 45PB of data is
managed. Moreover, according to [31], with the advancement
of DNA sequencing, it is estimated that 20 exabytes of
genome data will be produced every year by 2025. Huge
data in genome analysis requires enormous CPU, memory,
and I/O resources. Consequently, private institutions may not
be able to afford the cost. Public cloud providers, e.g., Google
Cloud, Amazon EC2 and Microsoft Azure, offer abundant
CPU and associated memory and disk I/O resources that
users may request. However, to process 20 exabytes genome
data in Google Cloud means about 1.6× 1010 CPU hours in
GATK4, which is about 0.53 billion dollars for CPU cost only.
Moreover, users have to pay for the requested I/O resources as
well. Cloud providers support different disk I/O options. While
SSD offers a much higher bandwidth compared to HDD, it is
charged at a much higher price (4.2x in Table V). An important
question naturally arises from such observations: In a public
cloud, how does one effectively find the optimal configuration
to minimize cost for its required workload?

This is not a trivial question. While a higher configuration
can deliver shorter execution time, the cost per time unit
is increased. On the other hand, although adopting a lower

configuration guarantees lower cost per time unit, the total
execution time rises. Hence, a balance needs to be discovered.

TABLE V: Disk price in Google Cloud platform

Type Price (per GB/month )
Standard provisioned space $0.040

SSD provisioned space $0.170

1) Cost Modeling for HDDs and SSDs: With GATK4 as
an example, we demonstrate that with our I/O-aware analytic
model, users can quickly find the optimal hardware config-
uration from a large set of configurations in a public cloud
to save on cost. In this section, all the results we report are
genome sequencing with 500 million read pairs, as described
in Section II-C.

In Google Cloud, users can specify the CPU instance with
a different number of virtual CPU cores. The disks are also
virtualized in Google Cloud. According to their datasheet [32],
the virtual disk bandwidth is related to its configured size. Size
and type (e.g., HDD or SSD) are the determinant factors of
the disk price.

First, we do one-time disk profiling per data center. We
create lookup tables for HDD and SSD persistent disk under
different sizes. The read bandwidths for different request sizes
of HDD and SSD can be found in [14].

For each application, we can perform four profiling runs to
get the model variables usually under a small number of nodes
N (e.g., N = 3) based on our models described in Equation 1.
For tscale, M can be obtained from one profiling run. t avg
and δscale can not be measured directly from profiling run.
But we can choose two different P , measure corresponding
tscale, and calculate t avg and δscale. The details are first and
second sample run as the followings. And to measure BWread

and BWwrite in tread limit and twrite limit for read/write
operations on HDFS and Spark Local separately, we need two
additional sample runs, which are the third and fourth sample
run as the followings. After four sample runs, we can obtain
all constants in Equation 1.

1. In the first sample run, we set P = 1, and set one SSD
disk for HDFS and one for Spark Local. Both are sized
at 500GB. This setting is chosen because we want to get
the runtime when I/O is not the system bottleneck; that is,
P < Bread and P < Bwrite. Runtime for each stage tstage
is logged. And for each stage, we can get the number of
tasks M , and data access size Dread and Dwrite. At the
same time, iostat is used to log the average I/O request
sizes RSread, RSwrite to look up the effective bandwidths
BWread, BWwrite. Then we perform a sanity check that
tstage >

D
N∗BW

; that is, I/O is not the bottleneck.
2. In the second sample run, we set P = 2, and set one SSD

disk (500GB) for HDFS and one for Spark Local. Similarly,
a sanity check that I/O is not the bottleneck is also done.
Together with the first sample run, we can derive the δscale
and the average execution time of a single task t avg.
δscale characterizes the serial execution time that can not
be parallelized.

3. In the third sample run, we set P = 16 (according to [33],
performance is more predictable for an instance with at
least 16 vCPUs), and set one HDD (200GB) for Spark
Local, and one SSD (500GB) for HDFS. This setting is
chosen to get the runtime when I/O can be a bottleneck
for I/O-related operations that need to read/write from/to
Spark Local. For each stage, iostat is used to log the
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I/O request sizes RSread, RSwrite to look up effective
bandwidths BWread, BWwrite for Spark Local. Constant
δread and δwrite are also calculated.

4. In the fourth sample run, we also set P as 16, and set one
HDD (200GB) for HDFS, and one SSD (500GB) for Spark
Local. This sample run is similar to the third sample run,
except that I/O can be a bottleneck on HDFS read or write.
Similarly, we can log the I/O request sizes RSread, RSwrite

to look up effective bandwidths BWread, BWwrite for
HDFS.

In the first sample run, the default SSD size is chosen at
500GB. If I/O is a bottleneck even for P = 1, we could double
the requested SSD size and re-sample. For the third and fourth
sample runs, the default HDD size is chosen at 200GB. If I/O
is not a bottleneck even for P = 16, we could shrink the
requested HDD size by half and re-sample.

After getting the model, the configuration selection problem
is converted to minimize a discrete multivariate function Cost
= f (P, DiskTypes, DiskSizeHDFS, DiskSizeSpark Local, Time).
Here P denotes the core number per node and Time denotes
the execution time which can be derived from our model.
This optimization problem can be solved by the gradient
descent method. We first consider DiskTypes as HDDs,
and the optimal configuration that we get is when P = 16,
DiskSizeHDFS = 1TB, DiskSizeSpark Local = 2TB.
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Fig. 13: Cost for using different sizes of HDDs

In order to give readers an idea of the trend of cost function,
in Fig. 13a and Fig. 13b we present the cost results un-
der DiskSizeHDFS = 1TB and DiskSizeSpark Local = 2TB. There
are two recommended hardware configurations for reference:
R1 [12] hardware provisioning from the Apache Spark official
website, suggesting 1:2 ratio of disks to CPU cores; R2 [13]
hardware provisioning for Hadoop cluster from Cloudera,
suggesting two hex-core machines with 12 disks (1TB), with
1:1 ratio of disks to CPU cores. If a 16 vCPU is used as
a worker node, the estimated cost for R1 with 8TB disk is
$6.06, and for R2 with 16TB disk it is $8.65. Interestingly,
the estimated cost found by our model is $4.12, which is 32%
and 52% lower than R1 and R2 costs, respectively.

2) Model Verification on Google Cloud: True, the virtu-
alized environment is much different than the physical one.
However, as shown in Section IV, all of the model factors are
only related to the system performance experienced at the user
level, whether or not the underlying runtime is virtualized.
That means the abstraction of our model is at user level—
which is higher than the underlying system level. Therefore,
our model can still work well in the cloud environment, and
this is proved by the following experiment results.

Due to our limited Google Cloud credit, we verify our
analytic model for using ten slave nodes, each with 16vCPU
and 1TB as HDFS, while changing the HDD Local size.
The measured runtime and predicted runtime from models are
compared in Fig. 14. When HDD Local size increases from
200GB to 2TB, runtime decreases. After 2TB, runtime remains
flat as expected. The average error rate is less than 4%.
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Fig. 14: 16vCPU: Comparison of measured runtime model (exp) and
predicted runtime (model) for GATK4 when using different sizes
HDD as Local (HDFS is set to 1TB HDD).

3) Cost Modeling for SSDs: Fig. 15 shows the case where
SSD is used for Spark Local, with estimated cost and runtime
for different numbers of executor cores P using different sizes
SSD as Local (from 20GB to 3.2TB). The optimal cost of
using SSD is less ($3.75) which is another 1.1x as compared
to $4.12 using HDD as Spark Local. The measured runtime
of using 200GB SSD as Spark Local is 43 mins, while the
estimated runtime from the model is 45 mins (error rate 4.6%).
Last, considering SSD as HDFS does not bring further cost
savings. We omit the details due to space constraints.
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Fig. 15: Cost for using different sizes SSD as Local (HDFS is set to
1TB HDD).

4) Modeling Results: In conclusion, using 200GB SSD as
Spark Local and 1TB HDD as HDFS achieves the cost-optimal
hardware configuration for 16vCPU as a worker node. The
cost is $3.75, which is 38% and 57% lower than the cost of
suggested configurations in R1 [12] and R2 [13] respectively.

VII. RELATED WORK

A. Spark Performance Analysis and Modeling

K. Ousterhout et al. [5] use blocked time analysis to
study the impact of network, I/O and stragglers on Spark
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performance. In their paper, for the SQL workloads and the
hardware setup they study, optimization on the network and
I/O storage reduces the runtime by at most 2% and 19%,
respectively. The conclusion on I/O part can also be explained
by our model: 1) Average megabytes transferred to or from
disk MB/s per node in their SQL workload is 10 MB/s
(98MB/s in GATK4); 2) CPU:Disk Ratio in their cluster is 4:1
(18:1 in our cluster). By applying this number in Equation 1,
I/O is not bottleneck in their application and cluster setup. On
network part, A. Trivedi et al. [34] point out that moving from
a 1Gbs to a 10Gbs network reduces the Spark runtime by up to
2.5x, and the network performance still matters. Others study
Spark performance from an architecture perspective [35],
NUMA [35, 36, 37], huge page [36], hyperthreading [35, 37],
tuning JVM parameters and OS parameters [37], or from an
application perspective [22].

E. Gianniti et al. [9] use Fluid Petri Nets to model the
performance of MapReduce and Spark applications. It fo-
cuses on a scenario of the user-shared cluster, using previous
execution information to study the distribution of the task
time which is used for future prediction. Yet, our model can
work in a much wider scenario, and the methodology we
adopt is quite different than their statistical way. CherryP-
ick [38] leverages Bayesian optimization and builds the non-
parametric performance model. However, it picks a cost-saving
configuration from a limited number (66) of predefined cloud
configurations. Studies like Ernest [8] and [6] build analytic
models to predict the Spark performance on iterative machine
learning algorithms when there are more slave/worker nodes.
However, in their models, the I/O impact on different data
request sizes is not considered; this has a significant impact
on performance, especially for the HDD case (as we studied
in Section III-C and Section V-B).

B. Impact of I/O on Parallel and Distributed Computing

Work in [4, 39] studies how SSD and HDD impact the
MapReduce performance. In [4] the runtime difference be-
tween SSDs and HDDs is compared: the number of SSD
and HDD is matched as 1 to 11 on equivalent sequential
I/O bandwidth. We do not match the number of disks as
in [4] because the I/O bandwidth of SSDs and HDDs is not
constant and varies significantly with application-requested I/O
block size (as explained in Section III-C). Thus, matching
on sequential I/O does not mean matching on random I/O.
Other work like [40, 41] studies the SSD performance with
its internal mechanism.

Work in [42, 43] characterizes I/O impact for HPC clus-
ters and proposes job scheduling algorithms to optimize the
system throughput among different applications. Opass [44]
analyzes how remote and imbalanced read accesses impact
system performance in distributed file systems and proposes
optimization to maximize data locality and access balance. I.
S. Choi et al. [45] leverage PCIe SSD to optimize the I/O
performance of Spark. Work in [46] discusses how to scale
Spark in HPC clusters where a global parallel file system is
used instead of local disks. In summary, to the best of our
knowledge, we are the first to propose an I/O-aware analytic
model to quantitatively analyze and model the impact of I/O
on applications running on top of the in-memory computing
framework Spark.

VIII. CONCLUSION AND FUTURE WORK

In this paper we observe that I/O can still play a heavy
role—even in the in-memory cluster computing frameworks
like Apache Spark. After a quantitative analysis, we find that
the performance gap is mainly caused by a large number of
(random) intermediate data accesses with small data blocks to
the Spark local storage, where SSDs can achieve a much more
effective bandwidth than HDDs. Such Spark local storage
accesses are often used to avoid recomputation of time-
consuming sort in shuffle operations, or persist large RDDs
that consume a large amount of memory if cached. More im-
portantly, we propose an I/O-aware analytical model to reason
the performance of Spark programs, where it brings together
the effective I/O bandwidth under different data access sizes
and different numbers of CPU cores, and the overlap between
the CPU computation and I/O accesses which has been often
overlooked in past studies. Our proposed model can analyti-
cally explain and predict (within a 10% error rate) the runtime
behavior of the production-quality genome analysis toolkit
GATK4, and typical iterative algorithms that are computation-
heavy, as well as typical shuffle-heavy algorithms. Finally, we
demonstrate our model’s usage by doing cost optimization in
Google Cloud, which can quickly find the optimal hardware
configuration in large exploration space and help us save 38%
and 57% in cost for genome sequencing compared to two other
recommended Spark cloud configurations.

GATK4 official release on January 2018 includes Burrows-
Wheeler Aligner (BWA) and HaplotypeCaller (HC) in addition
to MarkDuplicate (MD), BaseRecalibrator (BR) and SaveAs-
NewAPIHadoopFile (SF). The last three stages were the only
stable stages available when the paper was submitted in the
fall of 2017. We consider to include BWA and HC in our
future work.
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