
Author Copy. Personal Research Use Only. ASPDAC’24 Chiplet

Challenges and Opportunities to Enable Large-Scale Computing
via Heterogeneous Chiplets

Invited Paper

Zhuoping Yang∗, Shixin Ji∗, Xingzhen Chen∗, Jinming Zhuang∗, Weifeng Zhang†, Dharmesh Jani‡, Peipei Zhou∗
∗ University of Pittsburgh, † Lightelligence, ‡ Meta

Email: {zhuoping.yang, peipei.zhou}@pitt.edu∗,
weifeng.zhang@lightelligence.ai† , janidb@meta.com‡

Abstract—Fast-evolving artificial intelligence (AI) algorithms
such as large language models have been driving the ever-
increasing computing demands in today’s data centers. Hetero-
geneous computing with domain-specific architectures (DSAs)
brings many opportunities when scaling up and scaling out the
computing system. In particular, heterogeneous chiplet architec-
ture is favored to keep scaling up and scaling out the system as
well as to reduce the design complexity and the cost stemming
from the traditional monolithic chip design. However, how to
interconnect computing resources and orchestrate heterogeneous
chiplets is the key to success. In this paper, we first discuss the
diversity and evolving demands of different AI workloads. We
discuss how chiplet brings better cost efficiency and shorter time
to market. Then we discuss the challenges in establishing chiplet
interface standards, packaging, and security issues. We further
discuss the software programming challenges in chiplet systems.

Index Terms—Chiplet, interconnect, advanced packaging, se-
curity, programming abstraction, heterogeneous computing, large
language model (LLM), generative AI

I. INTRODUCTION

Artificial intelligence (AI) and deep learning (DL) have
provided an effective way to address complicated tasks in
applications including computer vision, natural language pro-
cessing, etc. Many hardware accelerators including GPUs,
dedicated DL application-specific integrated circuits (ASICs),
and FPGAs, are proposed to increase both throughput and
energy efficiency. GPUs achieve high throughput by massive
parallelism, and they are widely used in deep neural network
(DNN) training as they can hugely exploit the parallelism in
large batches of training data. From the deep learning inference
aspect, for example in real-time application scenarios where
low latency is required, ASICs are designed in the seek for
better customization. However, designing ASICs is not trivial.
Companies would spend three or four years developing their
first ASIC from scratch, and two or three years releasing a
subsequent ASIC [1], not to mention the huge costs in dollars
(millions to billions). FPGAs offer greater programmability
compared to ASICs, enabling rapid and economical product
updates, albeit with some trade-offs in performance. In fact, to
achieve higher energy efficiency for DL tasks while providing
flexibility, there is a trend that CPUs, FPGAs, GPUs, and
accelerators (Accs) are integrated into the same system-on-
chip (SoC). Intel FPGAs Stratix 10 NX FPGA [2] and AMD
Versal ACAP architecture [3]–[6] integrate AI tensor cores into
the FPGA fabric (FPGA+Acc). Intel CPUs integrate vector
units to support SSE or AVX instructions. The latest AMD
Ryzen™ AI CPUs also integrate dedicated AI engines in

the CPUs (CPU+Acc) [7]. Nvidia Jetson Orin GPUs have
integrated tensor cores, multimedia cores, and NVDLA with
the CUDA cores (GPU+CPU+Accs).

In the abovementioned heterogeneous systems, integration
can be achieved with intellectual properties (IPs) designed
by the same company or through licensed IPs from other
companies. The emerging chiplet technologies are enabling
novel heterogeneous integration across different IP vendors.
Traditional chip is implemented on a monolithic silicon die
but the die size is approaching the lithographic reticle limits
due to growing complicated functionality and slow down of
process technology. Chiplets are smaller chips disaggregated
from an SoC and optimized for in-package communication [8].
In the vision of the Open Compute Project subgroup Open
Domain Specific Architecture (ODSA) [9], chiplets can be
easily reused and integrated on an interposer even if chiplets
are manufactured by different vendors. However, there remain
enormous research questions to be explored. In this paper, we
focus on how chiplets can meet new demands in generative
AI workload, and discuss the challenges in both hardware and
software with potential solutions.

II. INFRASTRUCTURE CHALLENGES FROM DIVERSE AND
EVOLVING AI WORKLOADS

In the acceleration of AI tasks, both communication and
computation play crucial roles. One way to improve the com-
putation utilization is to overlap the time of communication
with the computation. If the communication time is less than
or equal to the computation, no hardware resources are idling.
However, the communication and computation demands vary
in different applications, e.g., GPT [11] and BERT [12]. We
use arithmetic intensity [13] to characterize the algorithms’
data reuse ratio and computation-to-communication (CTC)
ratio [14] to characterize the execution time between com-
putation and communication.

Arithmetic Intensity =
#Operations

#DataMovement

CTC =
TimeComp.

TimeComm.
=

#Operations/HWops

#DataMovement/HWbw

(1)

GPT and BERT are both Transformer model variances. As
shown in Figure 1 BERT repeats encoder blocks while GPT
is built using decoder blocks. In generation tasks, the input
sequence is first transformed into tokens. We can mask some
tokens and pass the masked tokens to BERT and BERT pre-
dicts all masked tokens in only one inference. Different from



Author Copy. Personal Research Use Only. ASPDAC’24 Chiplet

TABLE I: Comparisons between chiplet and PCB, monolithic ASIC [10].

Integration Technology Design Cycle Cost/$ Integration Energy Efficiency Performance

Monolithic ASIC >1 year >1,000,000 +++ + +++
Chiplet months 1,000-1,000,000 ++ ++ ++

PCB weeks 100-10,000 + +++ +

BERT generation, GPT only generates one next token based on
previous tokens and the generation process can be further split
into two sub-tasks, prompt processing and token generation.
In prompt processing, GPT processes all tokens, predicts the
next one, and stores intermediate data to avoid recomputation
in the token generation processes. This technique is referred
to as KV-cache. Then, in the token generation, GPT only
processes the last token and generates the next token using
KV-cache. Therefore, GPT has a very low arithmetic intensity
in the token generation process whereas BERT has a higher
arithmetic intensity. For example, when the sequence length
is 512, the arithmetic intensity of GPT-2 and BERT-Large
are 2 and 266 respectively [13]. Similarly, the variances in
arithmetic intensity also exist in different operations within
the same model. Layers including convolution and matrix-
multiply are more computationally intensive while activations
such as Softmax are more demanding in data movement. The
variances of arithmetic intensity in different workloads entail
different demands in bandwidth and computation resources
when designing hardware accelerators.

* #Encoder

Embedding

FFN

MHA

…

Prediction

T0 T1 T2 T3 T4 

T0 T1 T2 T3 T4 

* #Decoder

Embedding

FFN

MHA

…

Predict Next 
Token

TN+1

T0 T1 …Tn 

Embedding

FFN

MHA

…

* #Decoder

Predict Next 
Token

TN+2

TN+1

masks

KV
Cache

(a) BERT (b) GPT
Prompt Processing Token Generation

Fig. 1: Different processes in BERT and GPT.

Additionally, the differences between the growth of peak
hardware throughput and bandwidth are growing, which means
the design complexity also increases as more data reuse
and higher arithmetic intensity are needed. There is a trend
showing that every two years, the peak hardware throughput
increases 3x but the bandwidth only increases 1.6x [15]. An-
other trend is that the gap between the hardware memory size
and AI model size surges. In recent two years, the AI model
has increased 410x while hardware memory only increases
2x [15]. These emerging demands are pushing innovations in
designing scalable hardware acceleration systems.

III. CHIPLETS: A SOLUTION FOR RAPID HETEROGENEOUS
SYSTEM DEVELOPMENT

To catch up with the increasing demands, more circuits are
integrated into chips. However, simply scaling the monolithic
ASIC accelerators is hardly practical. The chiplet technique is
becoming a promising solution to improve performance and
energy efficiency and decrease the cost and time to market
(design cycle column in Table I), which also suits the different
requirements of customers.

There are two limitations in scaling up monolithic ASIC
chips: the chip area and the yield rate. The die size of CPUs
and GPUs grew 14% and 8% respectively every year [16] from
2006 to 2020, which is quickly approaching the lithographic
reticle limit. Furthermore, the yield will decrease with the
increase in die sizes, which causes more waste, leading to
higher costs. One way to keep scaling while minimizing
the cost is to fabricate small chips and then integrate them.
Traditionally, multiple chips can be connected via printed
circuit boards (PCBs). However, PCB systems are difficult to
provide high-density inter-chip connections, which is required
in many applications. The PCB systems cannot pack more
than 400 connections in 1 cm2 because the PCBs are prone
to warpage and the distance between solder bumps (used to
connect the PCBs and chips) cannot be less than 0.5 mm [17].
Besides, due to the wire length and parasitic parameters
the PCB systems need more power in interconnection and
the signal frequency is low [8]. The chiplet technique is
proposed to keep the performance scaling and maintain a
reasonable cost. This is done by partitioning a monolithic
chip into several smaller chiplets and reassembling them into a
system-in-package (SiP). This method enables further scaling
in the silicon area and decreases the cost. Table I compares
chiplet technology, monolithic ASIC, and PCB in various
metrics [10].

The chiplet technology has been adopted and shown great
improvement in real-world products. For example, the first-
generation AMD EPYC CPU processor [18] is based on
chiplet architecture, which consists of four chiplets in the
14nm process node. Compared with the monolithic design,
the chiplet-based architecture integrates more silicon area in
total, which exceeds the reticle limits. Besides, the cost of the
chiplet-based architecture is 41% cheaper than a monolithic
design [16].

Additionally, chiplet technology allows the integration of
chiplets in different process nodes, which provides more
choices for different IPs. For example, unlike digital circuits,
analog circuits or mixed-signal IPs do not benefit greatly from
the advanced technology node, and it is also difficult and time-
consuming to apply new technology to them [19]. Therefore,



Author Copy. Personal Research Use Only. ASPDAC’24 Chiplet

it is necessary to manufacture these IPs in a more mature
technology node. Chiplet allows us to integrate these analog or
mixed-signal chiplets together with digital circuit chiplets that
are fabricated in more advanced technology. Besides, designers
can select various chiplets to fulfill specific requirements.
For example, GPT-based applications have high demands in
memory bandwidth [20]. Therefore, to decrease inference
latency, chiplets with more memory channels or higher I/O
bandwidth are preferred to be integrated into the SiP.

IV. HARDWARE DESIGN CHALLENGES

A. Chiplet Interfaces

To achieve heterogeneous integration, further efforts are
required for chiplet interconnection design, which includes
interconnection protocols standardization, routing algorithms
in SiP, and system simulation supports for chiplet system
design.

1) Chiplet-based protocols and interfaces: To enable com-
munication between chiplets, chiplets need to follow the same
transmission protocol. However, different vendors adopt dif-
ferent protocols, which hinders the heterogeneous integration.
Besides, it is difficult to develop a unified protocol that
suits various applications as different applications may have
different requirements.

Serial interface and parallel interface are two categories of
inter chiplet communication interfaces. The serial interface
only requires a pair of differential connections to facilitate
data transmission in the physical layer, while the parallel
interface uses multiple connections [31], [32]. For example,
ultra-short-reach (USR) [21], [33] is a serial interface [32]
designed for die-to-die interconnect, which aims to ultra-
short electrical interconnect and has a low power consumption
(< 0.6pJ/b) [21]. Compared with serial interface, parallel
interface typically has hundreds of connections and thus can
achieve the same bandwidth as the serial interface with a
much lower connection rate [32]. At present, there are many
parallel interface standards, such as Advanced Interface Bus
(AIB) [22], Bunch of Wires (BoW) [24], high bandwidth
memory (HBM) interconnect [26], Low-voltage-In-Package-
INter-CONnect (LINPINCON) [27], Universal Chiplet Inter-
connect Express (UCIe) [34], Advanced Cost-driven Chiplet
(ACC) [30]. Table II shows the differences between the
existing chiplet interfaces. These interfaces provide different
bandwidth, latency, etc, and have different demands on the
package. It is difficult to develop a unified interface that is the
best solution for all applications. Heterogeneous integration
has another opportunity when integrating off-the-shelf chiplets
equipped with different chiplet interfaces. For example, de-
signing a hub chiplet that communicates to two different off-
the-shelf chiplets that are equipped with two different die-to-
die (D2D) IPs. However, designers have to pay two times D2D
IP non-recurring engineering (NRE) cost for the hub chiplet,
which brings extra cost and design complexity.

2) Passive and active interposer: Silicon interposer is one
of the chiplet packaging technology. The passive interposers

only have wires while the active interposes have active com-
ponents and allow offloading digital logic circuits to the
interposer. The active interposer has many advantages. For
example, the routers do not have to be placed on the chiplets,
which decreases the silicon area of the chiplets. Repeaters can
be integrated for long signals to improve the frequency. The
active interposer also provides a way to distribute low-jitter
and low-skew clocks for all routers [35]. However, there are
also design challenges related to the active interposer. First, the
network topology may have an impact on the performance due
to data contention. [36] proposes a set of chiplet interconnect
topologies to balance the data traffic, avoid hot spots, and
provide better performance. Second, the multi-chiplet systems
are prone to have deadlock issues, even if each chiplet has
been verified for the functionality separately [37], [38]. The
deadlock typically results from the circular data dependencies
among different chiplets.

3) Pre-silicon hardware simulator for chiplet-based archi-
tecture: The scale of chiplet-based architecture is much larger
than the scale of the monolithic chip. Therefore, we need a
more powerful, functional, and multi-chiplet scenario-oriented
simulator in the pre-silicon phase.

Though we have several multi-core simulators, we can’t
use these multi-core simulators for the design of multi-chiplet
system [39]. In the design of the chiplet-based system, we
also need to accurately model the routing layer between
several chiplets, which is also not considered in the multi-
core simulation. There are some existing works on multi-
chiplet simulations [36], [40], [41]. As the scale of the chiplet-
based systems keeps increasing we call for more efficient
and comprehensive simulators to provide robust support for
chiplet-based design.

B. Package Related Issues

Testing. The chiplet should not be a black box to the system
designer. The marketplace also needs standards to describe the
chiplets in terms of testing, thermal, I/O, etc [42]. Chiplets
potentially enable a marketplace where product developers
can buy modules for multiple vendors and assemble them
at a much lower cost than designing a chip from scratch.
However, product developers still have to design their own
interposer and package. A report shows that packaging costs
can be comparable with designing a chip due to the low
yield of the complex packaging processing and the bounding
defects [43]. In current packaging technologies, we cannot
detach a bonded die from the substrate without damaging
the die [8]. Therefore, comprehensive tests before the chiplets
are assembled are desired. These tests on individual chiplets
can be provided by the product developers to the packaging
vendors and should cover as many user cases as possible to
increase the test coverage. If the testing is performed after
the packaging process, and the exact chips with errors are
identified, we can not do repackaging as the repackaging
process will damage all the good chiplets as well as the
package. However, this is still an open area for academia, as
well as industry [42], [44], [45], and more works to develop the



Author Copy. Personal Research Use Only. ASPDAC’24 Chiplet

TABLE II: Comparisons between different chiplet interfaces (data accessed in 2023/11).

Protocol Institution Typical Energy
Efficiency (pJ/bit)

Maximum Speed
(Gbps/wire)

Fault Tolerance
Mechanism

USR [21] \ <0.6 [21] >20 [21] N/A
AIB [22], [23] Intel 0.85 (Gen1) 2 (Gen1) [22], 6.4 (Gen2) [23] N/A
BoW [24], [25] ODSA <0.25-1.0 [25] 32 [24] N/A

HBM [26] JESDC \ 6.4 ECC
LINPINCON [27] TSMC 0.424 2.8 N/A

UCIe [28] UCIe Union 0.25-1.25 [28] 32 GT/s [28] CRC + Retransmission
AAC [29], [30] China Chiplet Industry Alliance 2.5 [29] 128 [30] CRC + BER + Retransmission

standards which include reducing the required number of pins
for testing and standardizing the test interfaces are desired [8].
Thermal. Recent research has shown that the package de-
sign cannot guarantee full functionality without considering
the chiplets’ thermal characteristics [46]–[49]. Dark silicon
describes a phenomenon that in a many-core system, not all
cores can be active at the same time due to certain thermal
constraints. This problem is alleviated in the chiplet-based
system. However, we still have to address the thermal issues
since chiplets are placed close to each other to minimize
the wire length and package size. The thermal issues can be
addressed using both online management and offline design
optimization. In run-time management, the computational-
intensive tasks can be scheduled to non-adjacent chiplets.
Besides, the thermal issue can be addressed using dynamic
voltage and frequency scaling (DVFS) or run-time scheduling
after the chiplet systems are manufactured [50], but these
methods sacrifice performance. In offline design optimization,
thermal-aware chiplet placement approaches avoid hot spots
by increasing distance or inserting low-power chiplets between
high-power chiplets [46], [49]. [46] shows it can achieve 20
% peak temperature decrease without sacrificing performance
or using expensive cooling technology.
Package and chiplet co-design. The achievable system per-
formance is determined by both the package design and the
chiplet design. [47], [48] propose a holistic package design
flow that takes chiplets’ netlist into consideration. However,
this analysis would be hard to perform in the chiplet market-
place since the vendors may be reluctant to share their intel-
lectual properties. Therefore, the vendors and customers need
to find standard models to describe the electrical properties
of chiplets and enable fast simulation without revealing any
detailed circuit designs as discussed in standards [42].

C. Security Issues: Threat Models and Protections

The security of chiplet systems also poses significant chal-
lenges for both chiplet vendors and designers. Here, we focus
on the security issues from the product designers’ perspective.
Combining different chiplets from various vendors, chiplet
systems are more vulnerable to hardware security threats. On
the one hand, chiplet systems expose more vulnerabilities for
attacks [51]. The interaction among chiplets may lead to more
system side-effects. the design flaws or malicious circuits not
only appear in the chiplet but also can be inserted in the
integration stage or even in an active interposer [52]. On the
other hand, the complicated computing architecture and mix-

trust environment will bring more difficulties in developing
and deploying the protection methods on the chiplet systems.

1) Potential threats: From the product designers’ perspec-
tive, side-channel attacks, fault-injection attacks, and hardware
trojans are common threats, and these threats can also happen
in chiplet systems.
Side-channel attack is the attack that utilizes the unintentional
leakage information of the computing systems, which includes
memory, timing, power, electromagnetic, etc. For example,
Zombie Load [53] successfully extracts sealing keys from
the Intel SGX [54] enclave by using leaking memory data
of hyperthreading. Recently, some attacks have also been
proposed on accelerator systems like GPU systems [55] or in-
memory computing (IMC) systems [56]. In chiplet systems,
the interconnect channels may become new victims of side-
channel attacks. For example, the contention in the intercon-
nect could cause key leakage in cryptographic systems [57].
Fault-injection attacks use malicious circuits to trigger faults
in aspects like voltage [58], temperature [59], electromagnetic
[60], and so on. These threats could also exist in the chiplet
systems, which enables attackers to manipulate the behavior
of the chiplet systems in multiple ways.
Hardware trojan is malicious modification or inclusion of
additional malicious circuits. The hardware trojan could be
inserted into the system in each stage of the supply chain
including design, implementation, and integration [52]. Chiplet
systems can be prone to hardware trojans since there are more
parts and entities, e.g., untrusted vendors in the supply chain.

2) Potential protection methods: The novel and compli-
cated architecture of chiplet systems also brings challenges in
adopting protection methods. We summarize existing efforts
that could be adopted in chiplet systems below.
Trusted execution environments (TEEs) provide an isolated
space, namely an enclave, in which programs can be safely
executed even in an untrusted CPU. Initially, TEEs like Intel
SGX [54] only protect the basic CPU architecture, while
recently more methods have been proposed for heterogeneous
architecture with accelerators like GPU [61] and FPGA [62].
The rise of chiplet systems calls for more advanced methods:
a TEE may need to provide a safe environment across multiple
chiplets with different types. We need a generalized TEE
design framework that can be applied to different chiplets,
and different D2D interfaces, to minimize the design efforts.

The novel architecture of chiplet systems also brings new
methods and opportunities for protection. [63] proposed a new
concept of “Root of Trust”, which guarantees security by



Author Copy. Personal Research Use Only. ASPDAC’24 Chiplet

utilizing an active interposer. [64] improves the obfuscation
method, which adopts a hybrid split manufacturing methodol-
ogy and uses different vendors to manufacture the obfuscated
circuits. Therefore, in chiplet systems, the chip design can be
further spilled and obfuscated, thus providing more security.
[52] proposes to integrate additional trusted chiplets such as
chiplet-based hardware security modules (CHSM) and chiplet-
based security IPs (CSIP). The CHSM is an FPGA chiplet
from trusted vendors and features many sensors to detect
probing or fault injection attacks. The reconfigurability of
CHSM allows remote security policy updates in response to
zero-day attacks. CSIP can prevent attackers that have physical
access to the system by establishing encrypted communication
between chiplets. To achieve security, CSIP must be provided
by trusted vendors and has cryptographic modules, physically
unclonable functions (PUFs), etc.

V. SOFTWARE DESIGN CHALLENGES

Programming software on chiplet systems is challenging.
In existing host-device systems, CPUs can offload tasks to
accelerators such as FPGAs and GPUs and runtime is needed
to manage the data movement and execution. To enable the
host orchestration, vendor-dependent runtimes are required in
the host machine. In a chiplet system, the application will
probably be executed based on a number of different runtimes.
If a runtime does not cooperate with others and assumes full
ownership of the host system, conflicts may occur which might
lead to erroneous behaviors. Besides, different accelerators
usually need different development environments and design
kits. This means the developers have to write code that runs on
each chiplet separately. This not only introduces extra design
efforts but also reduces the portability of the application.

A unified programming infrastructure seems a promising so-
lution. Though many unified programming methods have been
proposed, it is still an open question that which infrastructure
fits the chiplet systems best. Here we summarize some existing
explorations.

In 2014, SYCL [65] was proposed to achieve heterogeneous
device programming for applications. As an open industry
standard, SYCL utilizes the C++ programming model. Several
implementations of SYCL have been introduced, including In-
tel oneAPI [66]. oneAPI is designed as a unified development
environment for different kinds of accelerators from different
vendors. Based on the Level Zero API, which acts as the
lowest-level interface, oneAPI provides a whole software stack
including system software, developer interface, etc.

Besides SYCL, MLIR [67] is also a desired choice. As a
compiler infrastructure, MLIR is adopted in different projects
like TensorFlow Graphs and Fortran IR, as well as various
domain-specific compilers. Some implementations of MLIR
on heterogeneous hardware systems are also been made re-
cently. ScaleHLS [68] uses MLIR in the FPGA high-level syn-
thesis (HLS) to suit the intrinsic hierarchies of HLS design and
enables larger design space and more optimization chances.
HeteroCL [69] proposed a programming infrastructure, decou-
pling algorithm specifications with hardware customization,

which gives developers an efficient way to explore larger
design space and higher performance.

To fully unleash the performance of chiplet systems, there
are many more aspects including higher-level software tools,
including how to map and partition the workload onto het-
erogeneous chiplets, how to do mapping and architecture
co-design for chiplet systems, etc. H2H [70] proposes a
communication-aware mapping algorithm to map heteroge-
neous models to heterogeneous systems. CHARM [4] proposes
a software mapping framework to map heterogeneous kernels
within end-to-end deep learning applications and heteroge-
neous components within an SoC. Such discussions should
be considered in chiplet system scenarios and reevaluated.

On top of that, how to perform efficient design space
explorations (DSE) in chiplet systems is also much needed.
For heterogeneous systems, the techniques needed for fine-
grained control like pipeline or parallelism require a deep
understanding of the architecture from the software developers.
There is a need for tools that can: (1) describe different
optimization techniques on different chiplet architectures; (2)
automatically find the optimal configurations on these hetero-
geneous chiplet systems. For example, for FPGA accelerators,
AutoDSE [71] develop a DSE framework, aiming to solve the
optimization bottleneck, usually application-specific, to enable
common software developers to produce high-quality FPGA
programs. Similar DSE tools are needed in more complicated
systems, e.g., the chiplet system.

VI. CONCLUSION

With the boom in AI models and fast-increasing demands on
performance and energy efficiency, heterogeneous integration
based on chiplet becomes a promising way to keep scaling
while minimizing the total cost. This paper summarizes the
current challenges and calls for innovations and collaborative
efforts to address these challenges.

ACKNOWLEDGEMENT

We acknowledge the support from the University of Pitts-
burgh New Faculty Start-up Grant and National Science Foun-
dation awards #2213701, #2217003, #2324864.

REFERENCES

[1] A. Reuther et al., “Ai and ml accelerator survey and trends.” Institute
of Electrical and Electronics Engineers Inc., 2022.

[2] Langhammer et al., “Stratix 10 nx architecture,” ACM TRETS, vol. 15,
no. 4, pp. 1–32, 2022.

[3] B. Gaide et al., “Xilinx adaptive compute acceleration platform: Ver-
saltm architecture,” in ACM/SIGDA FPGA, 2019.

[4] J. Zhuang et al., “CHARM: Composing Heterogeneous AcceleRators for
Matrix Multiply on Versal ACAP Architecture,” in ACM/SIGDA FPGA,
2023.

[5] Z. Yang et al., “AIM: Accelerating Arbitrary-precision Integer Multi-
plication on Heterogeneous Reconfigurable Computing Platform Versal
ACAP,” in ICCAD, 2023.

[6] J. Zhuang et al., “High Performance, Low Power Matrix Multiply Design
on ACAP: from Architecture, Design Challenges and DSE Perspectives,”
in 2023 60th ACM/IEEE Design Automation Conference DAC, 2023.

[7] AMD, “Amd ryzen™ ai software platform,” https://www.amd.com/en/
developer/resources/ryzen-ai-software-platform.html.

[8] M. Hutner et al., “Special session: Test challenges in a chiplet market-
place,” in 38th VTS. IEEE, 2020.

https://www.amd.com/en/developer/resources/ryzen-ai-software-platform.html
https://www.amd.com/en/developer/resources/ryzen-ai-software-platform.html


Author Copy. Personal Research Use Only. ASPDAC’24 Chiplet

[9] “Open domain-specific architecture ¿¿ open compute project,” https://
www.opencompute.org/projects/open-domain-specific-architecture.

[10] T. Li et al., “Chiplet heterogeneous integration technology—status and
challenges,” Electronics, vol. 9, no. 4, p. 670, 2020.

[11] A. Radford et al., “Improving language understanding by generative
pre-training,” 2018.

[12] J. Devlin et al., “BERT: pre-training of deep bidirectional transformers
for language understanding,” CoRR, vol. abs/1810.04805, 2018.

[13] “Full stack optimization of transformer inference: a survey,” 2 2023.
[Online]. Available: http://arxiv.org/abs/2302.14017

[14] C. Zhang et al., “Optimizing fpga-based accelerator design for deep
convolutional neural networks,” in ACM/SIGDA FPGA. ACM, 2015.

[15] A. Gholami et al., “Ai and memory wall,” RiseLab Medium Post, 2021.
[16] G. H. Loh et al., “Understanding chiplets today to anticipate future

integration opportunities and limits,” in DATE, 2021.
[17] P. Gupta et al., “Goodbye, motherboard. bare chiplets bonded to sil-

icon will make computers smaller and more powerful: Hello, silicon-
interconnect fabric,” IEEE Spectrum, vol. 56, no. 10, pp. 28–33, 2019.

[18] S. Naffziger et al., “Pioneering chiplet technology and design for the
amd epyc™ and ryzen™ processor families: Industrial product,” in
ACM/IEEE 48th ISCA. IEEE, 2021.

[19] R. Munoz, “Furthering moore’s law integration benefits in the chiplet
era,” IEEE Design & Test, pp. 1–1, 2023.

[20] H. Peng et al., “Chiplet cloud: Building ai supercomputers for serving
large generative language models,” arXiv:2307.02666, 2023.

[21] A. C. Carusone et al., “Ultra-short-reach interconnects for package-level
integration,” in IEEE OI, 2016.

[22] Intel. (2022) Advanced Interface Bus (AIB) Specification, Re-
vision 2.0.3. https://github.com/chipsalliance/AIB-specification/blob/
master/AIB Specification%202 0.pdf. Update Date:2022/06/17.

[23] David Kehlet, “Accelerating Innovation Through A Standard
Chiplet Interface: The Advanced Interface Bus (AIB),”
https://www.intel.com/content/dam/www/public/us/en/documents/
white-papers/accelerating-innovation-through-aib-whitepaper.pdf,
2022, update Date:2022/06/17.

[24] R. Farjadrad et al., “A bunch-of-wires (bow) interface for interchiplet
communication,” IEEE Micro, vol. 40, no. 1, pp. 15–24, 2020.

[25] “Bunch of Wires (BoW) PHY Specification, DRAFT Version 2.0,” https:
//www.opencompute.org/documents/bow-specification-v2-0d-1-pdf,
update Date:2023/03.

[26] JEDEC, “High Bandwidth Memory DRAM (HBM3),” January,2022.
[Online]. Available: https://www.jedec.org/document search?search
api views fulltext=JESD238

[27] M.-S. Lin et al., “A 16nm 256-bit wide 89.6gbyte/s total bandwidth
in-package interconnect with 0.3v swing and 0.062pj/bit power in info
package,” in IEEE HCS, 2016.

[28] “Universal Chiplet Interconnect Express (UCIe) Specification, Revi-
sion 1.1, Version 1.0,” https://www.uciexpress.org/specifications, update
Date: 2023/11.

[29] “Advanced Cost-driven Chiplet Interface (ACC 1.0),”
http://www.iiisct.com/smart/upload/CMS1/202303/ACC1.0.pdf, update
Date: 2023/11.

[30] K. Ma, “Introducing acc 1.0: Advanced cost-driven chiplet interface
standard,” in The 3rd HiPChips Conference at ISCA, 2023. [Online].
Available: https://hipchips.github.io/isca2023/

[31] S. Ardalan et al., “An open inter-chiplet communication link: Bunch of
wires (bow),” IEEE Micro, vol. 41, no. 1, pp. 54–60, 2020.

[32] X. Ma et al., “Survey on chiplets: interface, interconnect and integration
methodology,” CCF THPC, 2022.

[33] B. Dehlaghi et al., “Ultra-short-reach interconnects for die-to-die links:
Global bandwidth demands in microcosm,” IEEE Solid-State Circuits
Magazine, vol. 11, no. 2, pp. 42–53, 2019.

[34] D. Das Sharma et al., “Universal chiplet interconnect express (ucie): An
open industry standard for innovations with chiplets at package level,”
IEEE CPMT, 2022.

[35] D. Stow et al., “Investigation of cost-optimal network-on-chip for
passive and active interposer systems,” in 2019 ACM/IEEE International
Workshop on System Level Interconnect Prediction (SLIP). IEEE.

[36] S. Bharadwaj et al., “Kite: A family of heterogeneous interposer
topologies enabled via accurate interconnect modeling,” in DAC, 2020.

[37] E. Taheri et al., “Deft: A deadlock-free and fault-tolerant routing
algorithm for 2.5 d chiplet networks,” in DATE. IEEE, 2022.

[38] J. Yin et al., “Modular routing design for chiplet-based systems,” in 45th
ISCA. IEEE, 2018.

[39] C. Chen et al., “Design challenges of intrachiplet and interchiplet
interconnection,” IEEE Design & Test, 2022.

[40] H. Zhi et al., “A methodology for simulating multi-chiplet systems using
open-source simulators,” in NANOCOM, 2021.

[41] G. Krishnan et al., “Siam: Chiplet-based scalable in-memory accelera-
tion with mesh for deep neural networks,” ACM TECS, 2021.

[42] A. Mastroianni et al., “Proposed standardization of heterogenous inte-
grated chiplet models.” IEEE, 2021.

[43] Y. Feng et al., “Chiplet actuary: A quantitative cost model and multi-
chiplet architecture exploration,” in DAC, 2022.

[44] “IEEE Standard for Access and Control of Instrumentation Embedded
within a Semiconductor Device,” IEEE Std 1687-2014, pp. 1–283, 2014.

[45] “IEEE Standard for Test Access Architecture for Three-Dimensional
Stacked Integrated Circuits,” IEEE Std 1838-2019, 2020.

[46] Y. Ma et al., “Tap-2.5d: A thermally-aware chiplet placement method-
ology for 2.5d systems,” DATE, 2021.

[47] M. D. Kabir et al., “Holistic 2.5d chiplet design flow: A 65nm shared-
block microcontroller case study,” IEEE SOCC 2020.

[48] A. Kabir et al., “Coupling extraction and optimization for heterogeneous
2.5d chiplet-package co-design,” 2020.

[49] F. Eris et al., “Leveraging thermally-aware chiplet organization in 2.5 d
systems to reclaim dark silicon,” in DATE. IEEE, 2018.

[50] X. Li et al., “Power management for chiplet-based multicore systems
using deep reinforcement learning.” IEEE Computer Society, 2022.

[51] W. Hu et al., “An overview of hardware security and trust: Threats,
countermeasures, and design tools,” TCAD, 2020.

[52] M. S. U. I. Sami et al., “Enabling security of heterogeneous integration:
From supply chain to in-field operations,” IEEE Design & Test, 2023.

[53] M. Schwarz et al., “Zombieload: Cross-privilege-boundary data sam-
pling,” in CCS, 2019.

[54] F. McKeen et al., “Intel® software guard extensions (intel® sgx) support
for dynamic memory management inside an enclave,” in HASP, 2016.

[55] C. Luo et al., “Side-channel timing attack of rsa on a gpu,” TACO,
vol. 16, no. 3, pp. 1–18, 2019.

[56] Z. Wang et al., “Side-channel attack analysis on in-memory computing
architectures,” IEEE TETC, 2023.

[57] M. Dai et al., “Don’t mesh around:{Side-Channel} attacks and mitiga-
tions on mesh interconnects,” in USENIX Security, 2022, pp. 2857–2874.

[58] J. Krautter et al., “Fpgahammer: Remote voltage fault attacks on shared
fpgas, suitable for dfa on aes,” IACR CHES, pp. 44–68, 2018.

[59] M. M. Alam et al., “Ram-jam: Remote temperature and voltage fault
attack on fpgas using memory collisions,” in 2019 FDTC. IEEE, 2019.

[60] M. A. Elmohr et al., “Em fault injection on arm and risc-v,” in 2020
ISQED. IEEE, 2020, pp. 206–212.

[61] S. Volos et al., “Graviton: Trusted execution environments on {GPUs},”
in OSDI, 2018, pp. 681–696.

[62] M. Zhao et al., “Shef: Shielded enclaves for cloud fpgas,” in ASPLOS,
2022, pp. 1070–1085.

[63] M. Nabeel et al., “2.5 d root of trust: Secure system-level integration of
untrusted chiplets,” IEEE TC, vol. 69, no. 11, pp. 1611–1625, 2020.

[64] Y. Safari et al., “Hybrid obfuscation of chiplet-based systems,” in DAC.
IEEE, 2023, pp. 1–6.

[65] “SYCL Overview,” https://www.khronos.org/sycl/.
[66] R. W. Wisniewski et al., “A holistic systems approach to leveraging

heterogeneity,” in 2021 PEHC. IEEE, 2021, pp. 27–33.
[67] C. Lattner et al., “MLIR: Scaling compiler infrastructure for domain

specific computation,” in 2021 IEEE/ACM CGO. IEEE, 2021.
[68] H. Ye et al., “Scalehls: A new scalable high-level synthesis framework

on multi-level intermediate representation,” HPCA, 2022.
[69] Y.-H. Lai et al., “Heterocl: A multi-paradigm programming infrastruc-

ture for software-defined reconfigurable computing,” in FPGA, 2019.
[70] X. Zhang et al., “H2h: Heterogeneous model to heterogeneous system

mapping with computation and communication awareness,” in Proceed-
ings of the 59th ACM/IEEE Design Automation Conference, 2022, pp.
601–606.

[71] A. Sohrabizadeh et al., “Autodse: Enabling software programmers to
design efficient fpga accelerators,” TODAES, 2022.

https://www.opencompute.org/projects/open-domain-specific-architecture
https://www.opencompute.org/projects/open-domain-specific-architecture
http://arxiv.org/abs/2302.14017
https://github.com/chipsalliance/AIB-specification/blob/master/AIB_Specification%202_0.pdf
https://github.com/chipsalliance/AIB-specification/blob/master/AIB_Specification%202_0.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/accelerating-innovation-through-aib-whitepaper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/accelerating-innovation-through-aib-whitepaper.pdf
https://www.opencompute.org/documents/bow-specification-v2-0d-1-pdf
https://www.opencompute.org/documents/bow-specification-v2-0d-1-pdf
https://www.jedec.org/document_search?search_api_views_fulltext=JESD238
https://www.jedec.org/document_search?search_api_views_fulltext=JESD238
https://www.uciexpress.org/specifications
http://www.iiisct.com/smart/upload/CMS1/202303/ACC1.0.pdf
https://hipchips.github.io/isca2023/
https://www.khronos.org/sycl/

	Introduction
	Infrastructure Challenges from Diverse and Evolving AI Workloads
	Chiplets: A Solution for Rapid Heterogeneous System Development
	Hardware Design Challenges
	Chiplet Interfaces
	Chiplet-based protocols and interfaces
	Passive and active interposer
	Pre-silicon hardware simulator for chiplet-based architecture

	Package Related Issues
	Security Issues: Threat Models and Protections
	Potential threats
	Potential protection methods


	Software Design Challenges 
	Conclusion
	References

