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Abstract—DNNs are rapidly evolving from streamlined single-
modality single-task (SMST) to multi-modality multi-task
(MMMT) with large variations for different layers and com-
plex data dependencies among layers. To support such models,
hardware systems also evolved to be heterogeneous. The het-
erogeneous system comes from the prevailing trend to integrate
diverse accelerators into the system for lower latency. FPGAs
have high computation density and communication bandwidth
and are configurable to be deployed with different designs
of accelerators, which are widely used for various machine-
learning applications. However, scaling from SMST to MMMT
on heterogeneous FPGAs is challenging since MMMT has much
larger layer variations, a massive number of layers, and complex
data dependency among different backbones. Previous mapping
algorithms are either inefficient or over-simplified which makes
them impractical in general scenarios. In this work, we propose
CHEF to enable efficient implementation of MMMT models in re-
alistic heterogeneous FPGA clusters, i.e. deploying heterogeneous
accelerators on heterogeneous FPGAs (A2F) and mapping the
heterogeneous DNNs on the deployed heterogeneous accelerators
(M2A). We propose CHEF-A2F, a two-stage accelerators-to-
FPGAs deployment approach to co-optimize hardware deploy-
ment and accelerator mapping. In addition, we propose CHEF-
M2A, which can support general and practical cases compared
to previous mapping algorithms. To the best of our knowledge,
this is the first attempt to implement MMMT models in real
heterogeneous FPGA clusters. Experimental results show that the
latency obtained with CHEF is near-optimal while the search time
is 10000X less than exhaustively searching the optimal solution.

Index Terms—multi-modality multi-task (MMMT), heteroge-
neous FPGA clusters.

I. INTRODUCTION

Deep neural networks (DNNs) are increasingly used in

complex machine learning applications, requiring diverse mod-

els and advanced hardware to meet new challenges [1]. On

one hand, DNNs are rapidly evolving from simple, single-

task systems to more complex, multi-task systems, especially
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in fields like robotics [2], human-computer interactions [3],

[4], virtual reality (VR)/ augmented reality (AR) [5], [6],

etc. Fig. 1 (a) shows an example of an MMMT model

with three modality nets fusing at the end. The circle 1.1

represents the first layer of the first modality. As shown in

Fig. 1 (a), such MMMT models involve complex inter-block

connections between multiple backbones of different sizes [1],

[7]. On the other hand, heterogeneous hardware acceleration

components are increasingly integrated into state-of-the-art

(SOTA) systems. FPGAs, known for their high computing

power and high flexibility, have been widely used for various

machine-learning applications both at the edge level and at

the cloud level [8]–[14]. For example, VMSS [12], an edge

server composed of Xilinx U50+U30 FPGAs is proposed to

build efficient video analytics in smart cities. Compared to

other platforms such as GPUs, TPUs, etc., VMSS can be

reconfigured to satisfy codecs, streaming protocols, specialized

DNNs, and other smart application needs efficiently. At the

cloud level, UIUC XACC [13] has been designed to support

high-performance computing, machine learning, and genomics

applications equipped with modern FPGAs. However, while

deploying SMST DNNs on such multi-accelerator clusters has

been well studied, scaling them into MMMT DNN applica-

tions has not been comprehensively investigated.

Compared with SMST, MMMT is more complex, with

varied layers, a massive number of layers, and intricate data

dependencies, presenting new challenges in accelerator design.

First, MMMT models have much larger variations in terms of

layer type and layer shape. For example, VFS [16], a typical

MMMT model, involves convolutional (Conv) layers, and fully

connected (FC) layers, and contains VGG and VD-CNN back-

bones. The input size of the VGG backbone is 3× 224× 224,

while the input size of the VD-CNN backbone is 64×1014×4.

When calculating the computation-to-communication (CTC)

ratio of all Conv layers on a monolithic accelerator on the

Xilinx U280 FPGA, the CTC ratio for VGG ranges from 48

to 448, while the CTC ratio of Conv layers in VD-CNN ranges

from 274 to 319. Existing multi-accelerator designs for SMST

models [8]–[11] partition available resources for each layer,

and design customized sub-accelerators for different types of

layers. Such layer-wise pipelined dataflow accelerators (DFAs)

can solve the large variation for shallower networks.

Second, since MMMT models contain multiple SMST back-

bones, the number of layers is also multiple times greater

than that found in single DNNs. For example, VFS includes

48 Conv and FC layers, while VLocNet [2], another MMMT
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Fig. 1. (a) Abstracted MMMT model with three modalities. A circle
represents a layer of a modality net, and an arrow represents data dependency
between two layers. The index a.b in the circle represents the bth layer of
the ath modality. MMMT models include complex inter-block connections
between multiple backbones. (b) Latency comparison for MAGMA [15] and
CHEF (ours) on VLocNet [2], an MMMT model. MAGMA focuses on
mapping multiple DNNs on multiple accelerators but does not involve cross-
backbone layer dependencies. Compared to MAGMA, CHEF achieves lower
latency for MMMT models with fewer PEs.

model, is composed of 141 layers. The traditional DFAs fail to

address the large variation when the network becomes deeper

because they would necessitate the design of numerous differ-

ent small accelerators under a fixed FPGA resource constraint.

As proved in DNNExplorer [17], more accelerators lead to

fewer resources for each stage, which eventually leads to lower

performance. DNNExplorer shows that when the number of

Conv layers increases from 13 to 38, the performance of a

38-layer model decreases by 77.8% compared to a shallower

network with 13 Conv layers.

Third, MMMT models include more complex inter-layer

dependency across different SMST backbones. While Her-

ald [18] and MAGMA [15] were developed to alleviate the

previous two challenges by running multiple networks on

multiple accelerators in parallel instead of in pure pipeline

fashion, the complex inter-layer dependency across different

SMST backbones makes them inefficient. Fig. 1 (b) shows

the comparison of the latency of VLocNet, a typical MMMT

model, on MAGMA and our design. MAGMA targets a

small accelerator with 32 × 64 processing elements (PEs)

and a large accelerator with 128 × 64 PEs. CHEF targets

Xilinx U280 (1808 PEs) and U250 (2458 PEs) FPGAs. In

FPGA, 5 digital signal processors (DSPs) conduct a multiply-

accumulate (MAC) operation and can be considered as one PE.

As illustrated in Fig. 1 (b), with fewer PEs, CHEF achieves

lower latency for MMMT models than the SOTA SMST-based

accelerator design.

H2H [1] is the first attempt to map MMMT models to

different FPGA accelerators using an iterative heuristic algo-

rithm. However, H2H cannot work for general scenarios due to

the following limitations. First, H2H relies on the CPU host

memory to store data when the DRAMs of FPGAs cannot

hold all data, which cannot work for edge servers without a

host. Second, in H2H, each FPGA is only deployed with one

accelerator, while in a more general case, one FPGA is feasible

to deploy with one or multiple sub-accelerators. The limited

design space prevents H2H from finding a more optimal

mapping scheme with better resource utilization. M5 [7] is

the second MMMT mapping work but has the following

limitations. First, M5 uses the number of DSPs to approximate

the resource consumption and latency, while the actual rela-

tionship between the resource consumption and latency is not

polynomial. Second, M5 only targets homogeneous clusters

rather than heterogeneous clusters. Therefore, these two works

are over-simplified and fail be applied in more complicated and

practical design scenarios existing in heterogeneous systems.

Compared to H2H and M5 which are the only two existing

works scheduling MMMT models on multiple FPGAs, our

work targets more general and practical scenarios for the

MMMT scheduling problem. It will be explained in Sec. III

in detail. Our main contributions are as follows.

• We propose CHEF-A2F (Sec. IV), a two-stage

accelerators-to-FPGAs deployment approach to

efficiently deploy heterogeneous accelerators to

heterogeneous FPGAs supporting diverse accelerator

types (DAT) (Feature 1⃝) and search for an efficient

solution in a nonlinear, multi-dimensional, multiple-

knapsack (MDMK) design space (Feature 2⃝).

• We propose CHEF-M2A (Sec. V), an efficient mapping

algorithm to map the MMMT models to the deployed

accelerators considering both the variation among hetero-

geneous layers and the inter-layer dependency. Compared

to H2H and M5, CHEF-M2A supports more compli-

cated scenarios as shown in Fig. 2 (b) incorporating

intra-FPGA bandwidth (BW) sharing (Feature 3⃝), inter-

FPGA-communication (Feature 4⃝), DRAM budget dur-

ing mapping (Feature 5⃝), and addressing cross-backbone

data dependencies (Feature 6⃝).

• Based on the CHEF algorithm, we develop a simulator

to estimate the latency of MMMT models for different

clusters. To the best of our knowledge, we are the

first to attempt to validate the simulator with end-to-end

implementation (Feature 7⃝). Experimental results show

that the deviation of the simulation result is only −7.81%

compared to the end-to-end on-board measurement result,

which validates that the estimated latency of CHEF is

relatively accurate. Therefore, our work can be used as

a benchmark for future mapping algorithms either in

simulation or implementation.

II. RELATED WORKS

A. Evolving from SMST to MMMT

The development of DNNs enables easier fusing from

different input signals, which makes it appealing to evolve

from streamlined SMST models to MMMT models for better

accuracy [19]. Currently, MMMT models are promising to

be applied in various applications such as robotics, human-

computer interaction, and VR/AR for better performance [2]–

[6], [20]. For example, VLocNet, a novel convolutional neural

network (CNN) architecture has been proposed which takes

two consecutive monocular images as input and regresses the

6-DoF global pose and 6-DoF odometry simultaneously and
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outperforms task-specific localization models [2]. In the 3D

autonomous driving scenario, FULLER takes both the point

cloud and image as inputs and achieves precision improvement

in both map segmentation and 3D detection [21]. However,

apart from better prediction accuracy, it is also necessary to

reduce the inference implementation with the help of diverse

accelerators. Compared with implementing SMST, implement-

ing MMMT has larger layer variation, a massive number of

layers, and more complex inter-layer dependency, which in-

creases the difficulties of efficiently deploying MMMT models

on hardware platforms.

B. Effectiveness of Heterogeneous Accelerators in SMST Im-

plementation and Limitations to be Applied in MMMT Imple-

mentation

To solve the large variation in DNN layer shapes, hetero-

geneous accelerators are designed for better utilization and

low latency [8]–[11], [15], [18]. Table I compares SOTA

heterogeneous accelerator designs considering the 7 features

mentioned in Sec. I. CHARM [8] provides a system-design

methodology for composing heterogeneous matrix multiply

(MM) accelerators on the Versal ACAP chip. Since the map-

ping targets a single FPGA with resource constraints including

PEs and on-chip BRAMs, the design space can be represented

as a multi-dimensional, single-knapsack problem (MDSK).

To efficiently map diverse sizes of MM layers on multiple

accelerators, it partitions the MM layers of different workloads

and generates resource partition candidates based on the

workload assignment. BLAST-R [9] explores heterogeneous

FPGA-based designs to effectively leverage both task and

data parallelism to achieve the minimum cost while satisfying

timing constraints. It models a CNN as a task graph and

partitions Conv layers into pipeline stages by inserting buffers.

Since it involves multiple FPGAs, the design space expands

to MDMK which is more complex to find an optimal solution.

However, the partition algorithms in CHARM and BLAST-R

only focus on the monotone type of layers, while an MMMT

model can be composed of Conv, FC, long short-term memory

(LSTM) layers, etc. To implement MMMT models, a more

general resource allocation approach supporting diverse layer

types is needed.

Dlastic-DF [10] and AIgean [11] have achieved full end-to-

end multi-FPGA implementations for traditional SMST mod-

els on the clusters with 100 Gb/s network. They involve inter-

FPGA data communication. However, AIgean only targets

resource-abundant FPGA clouds whose on-chip memory can

hold all data but have not considered the memory budget

for resource-constrained edge clusters. Dlastic-DF implements

SMST models in a pipelined manner. However, as mentioned

in Sec. I, such a pipelined manner suffers from fewer resources

for each stage, especially for MMMT DNNs involving multi-

ple times of layers compared to SMST DNNs.

To support evolved networks with multiple inputs, Her-

ald [18] and MAGMA [15] have been developed to deploy

multiple SMST DNNs on multiple accelerators, achieving

better utilization for heterogeneous layers. Unlike previous

DFAs [8]–[11], such approaches can address the former two

challenges of MMMT models: layer variation and massive

number of layers. However, unlike real MMMT models, the

heterogeneous SMST models are independent of each other.

As shown in Fig. 1, ignoring the last challenge, i.e. data

dependency among different backbones will lead to sub-

optimal solutions.

C. Deploying MMMT Models on Multi-FPGA Systems

To the best of our knowledge, H2H [1] and M5 [7] are

the only two works to map MMMT models to multi-FPGA

systems. H2H provides an iterative heuristic algorithm to map

MMMT models on heterogeneous off-the-shelf FPGA-based

accelerators with 4 steps including Computation Prioritized

Mapping under zero local DRAM assumption, Weight Locality

Optimization buffering parts of weights to local DRAM,

Activation Transfer Optimization reducing immediate feature

transmission latency for adjacent layer allocated on the same

accelerator, and Data Locality Aware Re-mapping to reduce

inter-FPGA data communication overhead. Different from

H2H which only assigns one accelerator on one FPGA board,

M5 explores flexible accelerator configurations and possi-

ble resource sharing among layers. However, the algorithms

of these works have not been validated on real hardware

platforms. The limitations mentioned in Sec. I prevent both

algorithms from being applied in practical scenarios. The

proposed CHEF will address these limitations which will be

discussed in Sec. III in detail. The main advantages of CHEF

compared with all existing works are presented in Table I.

III. MOTIVATION

As introduced in Sec. II-C, H2H and M5 are the only

two works addressing the MMMT models to multi-FPGAs

scheduling problem. However, the limitations in Sec. I prevent

them from being used in a practical and general system. This

section will first introduce the general system case and show

how the H2H and M5 fail in the case. Then, the overview

of CHEF is shown including the challenges and solutions to

achieve MMMT models to heterogenous FPGAs scheduling

in the general case.
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Fig. 2. (a) The architecture for the heterogeneous cluster in H2H [1]. It
contains multiple FPGAs, and one FPGA is deployed with an accelerator.
All FPGAs are connected to a main host with unlimited memory. (b) A more
general architecture is implemented in CHEF. Different from H2H, one FPGA
can be deployed with one or multiple accelerators. We only store weights and
immediate features on local DRAMs, and the memory constraint is considered.
1⃝ represents the intra-FPGA communication scheme. We support two inter-

FPGA communication schemes: 2⃝ the direct P2P communication between
two FPGAs without a host CPU, and 3⃝ the FPGAs are connected via a host.

In H2H, it is limited to only one accelerator connection

topology with a host shown in Fig. 2 (a) and ignores how to

deploy different heterogeneous accelerators to heterogeneous

FPGAs, which prevents the algorithm from being applied
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TABLE I
COMPARISONS WITH SOTA HETEROGENEOUS ACCELERATORS DESIGNS

Features 1⃝ DAT 2⃝ Knapsack 3⃝ Intra-FPGA 4⃝ Inter-FPGA 5⃝ DRAM budget 6⃝ Cross-backbone 7⃝ Implementation

CHARM [8] × MDSK ✓ × × × ✓

BLAST-R [9] × MDMK × ✓ × × ×

Elastic-DF [10] ✓ MDMK ✓ ✓ × × ✓

AIgean [11] ✓ MDMK × ✓ × × ✓

Herald [18] ✓ MDSK ✓ × × × ×

MAGMA [15] ✓ MDSK ✓ × × × ×

H2H [1] ✓ Fixed × ✓ ✓ ✓ ×

M5 [7] ✓ SDMK × ✓ × ✓ ×

CHEF (ours) ✓ MDMK ✓ ✓ ✓ ✓ ✓

in general FPGA systems. First, in Fig. 2 (a), H2H only

targets the situation in which all FPGAs are connected to

the main host. The host stores weights and immediate data

in the main memory and conducts data swapping between

two FPGAs. However, numerous general cases are beyond

H2H’s capabilities. For example, in the cases of edge servers

like VMSS, BLAST-R, etc., FPGAs can directly communicate

with each other via diverse connection approaches such as

Ethernet, PCIe, high-speed serial (HSS), etc., (i.e. 2⃝ in Fig. 2

(b)). The lack of main host memory makes it necessary to

store all data in the local DRAM of each FPGA. Some

clusters like UIUC XACC [13] and UCLA VAST [14] can

communicate with each other either via the main host ( 3⃝ in

the figure) or directly via the PCIe driver without requiring

access to the host CPU ( 2⃝). Second, H2H maps multi-

modal models to off-the-shelf accelerators. However, different

acceleration designs adopt different scheduling methodologies,

computation patterns, and communications patterns, so there

is no guarantee that these accelerators can be compatible with

each other. In addition, H2H only deploys one accelerator on

one FPGA, which is not flexible and leads to sub-optimal

mapping schemes. Different from H2H, CHEF targets a more

practical and general design situation, where users have some

compatible accelerator design intellectual properties (IPs) with

self-developed analytical models. An IP is an accelerator

design that can be deployed on an FPGA with a given

parallelism degree. This scenario is common in system design.

For example, Xilinx has developed a group of parameterizable

IP cores called deep-learning processor units (DPUs) which

are pre-implemented on FPGAs [22]. Since our work requires

finding an optimized scheduling scheme during the design time

before hardware implementation, an accurate analytical model

including the resource costs and latency for specific layers is

also indispensable. Given one or multiple FPGA platforms,

users can select IPs and deploy them to the system based on

application requirements. As shown in Fig. 2 (b), an FPGA is

flexible to either accommodate one big accelerator or multiple

smaller accelerators that can execute independent layers in

parallel.

M5 [7] is the second work to deploy the MMMT model

on multiple FPGAs but is oversimplified and only targets

homogeneous clusters. First, M5 is oversimplified which only

uses the utilized DSPs for each accelerator to profile the

resource consumption and latency. In practical system design,

the relationship between latency and resource costs is not poly-

nomial, which makes the mapping problem more complicated.

Second, M5 only targets homogeneous clusters of FPGAs,

while mapping heterogeneous models to heterogeneous clus-

ters of FPGAs introduces a larger design space. To sum up,

H2H and M5 fail to be applied in more complicated design

scenarios existing in heterogeneous systems.

Compared to H2H and M5 which are the only two existing

works scheduling MMMT models on multiple FPGAs, our

work targets more general and practical scenarios. As shown

in Fig. 2 (b), we have a cluster with heterogeneous FPGAs, and

each FPGA has a particular on-chip resource constraint, i.e.

available DSPs and block RAMs (BRAMs). Each FPGA also

has a fixed DRAM size and on-chip to off-chip communication

scheme 1⃝. All the data are stored in DRAMs and different

FPGAs can achieve peer-to-peer (P2P) communication directly

2⃝. The host is only used to call the functions for the on-chip

accelerator kernels. It should be noted that this architecture can

be extended to solve the architecture in Fig. 2 (a) by using half

of the bandwidth parameter in 3⃝ as the P2P communication

bandwidth, i.e. data between two FPGAs are relayed via the

main CPU host. Therefore, this architecture can support gen-

eral scenarios including cloud, edge, and on-device clusters.

Given the clusters, users have developed different compatible

candidate template accelerator IPs with diverse computation

resource costs and performance models. Unlike M5, which

relies on a simple performance model only considering the

computation parallelism of MAC based on the number of

DSPs, our performance model involves accurate profiling of

on-chip computation and on-chip to off-chip communication.

The model can be calibrated during on-board experiments.

The main goal of this study is to optimize both hardware

setup and accelerator mapping to ensure the efficient inference

performance of multi-task DNNs. Therefore, we introduce

CHEF, a framework designed for the effective deployment

of varied accelerators to FPGAs (CHEF-A2F) and for map-

ping complex DNNs to these accelerators (CHEF-M2A). The

overview is shown in Fig. 3.

In the general and practical case shown in Fig. 2 (b), we aim

to select efficient accelerators to be deployed on heterogeneous

FPGAs under hardware constraints and then map the MMMT

model to the deployed accelerators for low latency. As shown

in Fig. 3, the deploying and mapping problems need to be

co-optimized. We use a running example of scheduling VFS

on VMSS to illustrate CHEF.

There are two main challenges. The first is how to co-

optimize the hardware deployment and accelerator mapping in

the cluster. An FPGA can be deployed with one big accelerator
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CHEF

Challenge 1: how to co-optimize 
the hardware deployment and 

MMMT mapping in the cluster?

CHEF-A2F

Coarse-Grained Initial Deploying

Challenge 2: how to map MMMT 
DNNs with large layer variations, 
huge layer numbers, and complex 
data dependencies on the deployed 

accelerators?

Idle Aware Re-deploying

CHEF-M2A
Computation and Communication 

Aware Mapping

Data Locality Aware Re-mapping

Fig. 3. The overview of CHEF. It includes CHEF-A2F to deploy hetero-
geneous accelerators on different FPGAs and CHEF-M2A to map MMMT
DNNs on the deployed accelerators. CHEF-A2F includes 2 steps: Coarse-
Grained Initial Deploying and Idle Aware Re-deploying. CHEF-M2A includes
2 steps: Computation and Communication Aware Mapping and Data Locality
Aware Re-mapping. CHEF-M2A mapping is conducted in every deploying
to re-deploying iteration of CHEF-A2F. The 4 steps form a close-loop opti-
mization workflow and work iteratively until no more beneficial scheduling
scheme is acquired.

or multiple small accelerators running in parallel. Different

deployment leads to different mapping results, which is shown

in Fig. 5. Balancing between accelerator architectures and

available hardware resources is a trade-off. To address this

challenge, we propose CHEF-A2F, a two-stage accelerators-to-

FPGAs deployment approach. It starts mapping with Coarse-

Grained Initial Deploying and then conducts Idle Aware Re-

deploying based on the mapping results. It supports diverse

layer types (Feature 1⃝) and models the search space as

an MDMK problem (Feature 2⃝). This approach will be

introduced in detail in Sec. IV.

The second challenge is that, unlike traditional streamlined

DNNs, MMMT models have large layer variations, huge

layer numbers, and complex data dependencies, so it is non-

trivial to map MMMT DNNs on multiple FPGAs considering

both computation and communication patterns. Given both

computation and communication constraints, previous MMMT

mapping algorithms [1], [7] are oversimplified. Therefore, we

propose CHEF-M2A, a novel MMMT models-to-accelerators

mapping algorithm. It generalizes H2H by considering the

following additional configurations. Firstly, one FPGA can be

deployed with one or multiple accelerators, so accelerators can

communicate with each other via intra-board communication

(Feature 3⃝) or inter-board communication (Feature 4⃝). Sec-

ondly, without relying on the host memory to buffer weights

and intermediate data, the mapping algorithm will consider the

impacts of local DRAM size (Feature 5⃝). Compared to the 4

steps in H2H, CHEF-M2A achieves lower latency with only 2

steps: the Computation and Communication Aware Mapping

and Data Locality Aware Re-mapping. This mapping algorithm

will be introduced in Sec. V.

As illustrated in Fig. 3, the optimizations in CHEF-A2F and

CHEF-M2A form a close-loop optimization workflow. During

the initial deployment and each iteration of re-deploying in

CHEF-A2F, CHEF-M2A mapping is conducted to update

the mapping scheme based on the new accelerator-to-FPGA

deployment. CHEF stops until no more beneficial mapping

and deploying schemes can be obtained.

IV. CHEF-A2F

In this section, we propose CHEF-A2F, a two-stage

accelerators-to-FPGAs deployment approach to address the

first challenge discussed in Section III. The overall co-optimize

problem can be formulated as follows. Given i = 1, ...,m
FPGAs with available DSPs and BRAMs constraints, i.e.

DSPi and BRAMi for FPGAi, we have already designed

t = 1, ..., n types of accelerator IPs, e.g. A1 Conv IPs, A2

FC IPs, A3 LSTM IPs, etc. (Feature 1⃝). Each IP has an

analytical model which is composed of a resource and a

performance model [23], [24]. The resource model is used

to estimate its DSPs and BRAMs cost: e.g. DSPa=1,...,A1

and BRAMa=1,...,A1
for Conv IPs. The performance model

estimates the latency for a DNN layer of the same type. The

optimization problem can be illustrated in (1). The deployment

scheme is shown as ({Xita} 1 ≤ a ≤ At, 1 ≤ t ≤ n, 1 ≤ i ≤
m), where Xita is the number of ath IP for the tth accelerator

type deployed to FPGAi, and {Xita} is a list of Xita for

all IPs. The goal of the optimization problem is to minimize

the overall mapping latency of the deployed accelerators. The

first two constraints indicate that for each FPGA i, the sum of

DSPs and BRAMs costs of the deployed accelerators should

not exceed the available DSPs and BRAMs for each FPGA.

Constraint 3 indicates that the number of accelerators deployed

on each FPGA for each IP should be a non-negative integer,

and the same IPs can be selected multiple times. The last

constraint ensures that for each type of accelerator, at least

one IP should be selected and deployed in the multi-FPGA

cluster.

min CHEF −M2A Mapping({Xita}, 1 ≤ a ≤ At,

1 ≤ t ≤ n, 1 ≤ i ≤ m)

s.t.



















∑n

t=1

∑At

a=1
DSPita ·Xita < DSPi, ∀i

∑n

t=1

∑At

a=1
BRAMita ·Xita < BRAMi, ∀i

Xita ≥ 0 and integer
∑m

i=1

∑At

a=1
Xita ≥ 1, ∀t

(1)

It is apparent that (1) can be represented as a nonlinear,

MDMK problem, which is NP-hard and cannot be solved

in polynomial time. Since the mapping function is also non-

polynomial, directly applying traditional knapsack-solving al-

gorithms like dynamic programming (DP) to find an optimal

solution is time-consuming. Therefore, we propose a two-stage

accelerators-to-FPGAs deployment approach, CHEF-A2F, to

search for an efficient deploying scheme in an acceptable time

for this MDMK problem (Feature 2⃝).

The overview of CHEF-A2F is shown in Fig. 4. It first

allocates accelerators from the candidate IPs to the FPGA

cluster in a Coarse-Grained manner. Then, an Idle Aware

Re-deploying algorithm is proposed to remove and replace

some accelerators for better utilization. The Gantt charts of

the mapping scheme are shown in Fig. 5.

A. Coarse-Grained Initial Deploying

Since the Mapping function in (1) is non-polynomial, it

is time-consuming to directly apply knapsack-solving algo-

rithms. Therefore, we provide a coarse-grained approach to
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Fig. 4. Two-stage accelerators-to-FPGAs deployment approach (CHEF-A2F) visualization. It includes Coarse-Grained Initial Deploying and Idle Aware
Re-deploying. In every deploying or re-deploying iteration, MMMT is mapped to the deployed or re-deployed accelerators. The re-deploying stops until no
beneficial mapping scheme can be acquired. We only show the former 3 Conv layers for each modality of a MMMT model.
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Fig. 5. Gantt Charts of scheduling VFS on VMSS under 15 GB/s before
re-deployment and after re-deployment. The ’16 32’ means the parallelism
for the input channels is 16, while that for output channels is 32 for a Conv
layer. Different bar colors represent layers from different modalities. (a) The
mapping scheme after Coarse-Grained Initial Deploying. (b) The mapping
scheme after Idle Aware Re-deployment.

select the most powerful accelerators combination with the

maximum overall throughput as an initial deploying strategy.

For each tth type of accelerator IP ta deployed in FPGA

i, we estimate the maximum throughput the accelerator can

achieve for each layer of the MMMT model thpita. Then,

we approximate the mapping results in (1) using the sum

of the estimated maximum throughput for all the deployed

accelerators. The optimization goal after approximation is

shown in (2), while the constraints remain unchanged.

max

n
∑

t=1

m
∑

i=1

At
∑

a=1

thpita ·Xita (2)

This problem is changed to a standard linear programming

(LP) problem and can be solved by off-the-shelf LP tools.

In this work, PuLP [25] is used as the LP solver. After the

LP-based deployment, we apply the CHEF-M2A mapping

algorithm in Section V to get an initial estimated latency.

Current mapping scheme of the VFS running example is

shown in Fig. 5 (a).

B. Idle Aware Re-deployment

In Sec. IV-A, we use the maximum throughput to approxi-

mate the mapping performance for each deployed accelerator.

However, the accelerators cannot achieve the best performance

since some of them will be idle for some layers after CHEF-

M2A mapping. For example, in Fig. 5 (a), ’acc1’ is idle

after 0.06s. Therefore, we redeploy some accelerators based

on the mapping results. We found that after removing idle

accelerators (i.e. ’acc1’ in Fig. 5 (a)) we can leave space

to replace smaller accelerators with lower parallelism degrees

(i.e. ’acc0’ in Fig. 5 (a)) to bigger ones with higher parallelism

degrees (i.e. acc0 in Fig. 5 (b)). Based on this observation,

we propose an idle-aware re-deployment after getting the

initial deployment scheme, mapping, and estimated initial

latency Lat. We search for an optimized deployment scheme

by iteratively removing accelerators with longer idle time

and then replacing small accelerators with larger and more

powerful ones. We check the latency after mapping every time

a replacement is conducted and only accept the replacement

with shortened latency. The proposed re-deploying algorithm

adopts the duty cycle to measure if an accelerator is under-

utilized and idle.

The algorithm consists of the following steps: Step 1, for

the accelerator of each type, starting from the accelerator with

the least duty cycle, the algorithm will attempt to remove the

accelerator from the located FPGA if the accelerator is not

the only accelerator of the same type. For example, in Fig. 5

(a), there are two accelerator types: Conv and FC. ’acc2’ is the

only FC accelerator, while ’acc1’ has the lowest duty cycle for

all Conv accelerators. Step 2, For the remaining accelerators on

the same FPGA, the algorithm attempts to pick one and replace

it with another candidate IP as long as the DSPs and BRAMs

constraints are met (e.g. replace ’acc0’ on ’b0’ in Fig. 5 (a) to

’acc0’ in Fig. 5 (b). Step 3, for each replacement in Step 2, we

re-map the MMMT DNN using CHEF-M2A and choose the

deployment parameters {Xita} with the lowest latency (e.g.

the lowest Lat is shortened from 0.222s to 0.188s in Fig. 5

(b). Step 4, if the overall latency is shortened after Steps 1, 2,

and 3, we accept such replacement. The re-deploying scheme,

re-mapping scheme, and Lat are updated. Then, we return to

Step 1 using the updated duty cycle for the next re-deploying

iteration. If the latency is not shortened after the replacement,

we will remove another accelerator with the second least-

duty cycle and repeat Steps 2 and 3. If no accelerator can
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Lat (s)(a)

(b)
Lat (s)

Fig. 6. Gantt Charts of scheduling VFS on VMSS under 15 GB/s before
re-mapping and after re-mapping under Coarse-Grained Initial Deploying. (a)
The mapping scheme after Computation and Communication Aware Mapping.
(b) The mapping scheme after Data Locality Aware Re-mapping.

be removed for lower resultant latency, (e.g. Lat cannot be

shorter than that in Fig. 5 (b)), the algorithm will stop.

V. CHEF-M2A

This section will introduce the details of CHEF-M2A,

which maps MMMT models to the accelerators obtained in

Section IV. The input of the CHEF-M2A algorithm includes

the model graph Gmodel and accelerator-to-FPGA deploying

information {Fi{Accj}}. The nodes in Gmodel represent

the layers of the MMMT model, while the edges represent

layer dependencies. Unlike SMST, Gmodel involves multiple

branches with complex data dependency. We use the same

running example to illustrate the CHEF-M2A algorithm, and

the Cantt charts are shown in Fig. 6.

Unlike H2H which only lists the performance models

for each accelerator, CHEF-M2A models the accelerators-to-

FPGAs deploying information {Fi{Accj}} which is obtained

from ({Xita} 1 ≤ a ≤ At, 1 ≤ t ≤ n, 1 ≤ i ≤ m) . For

each FPGA Fi, it includes the list of deployed accelerators

{Accj}, the number of DDR/HBM channels, and available

DRAM size. Accj is the jth accelerator deployed in Fi. Each

accelerator Accj records which IP it is applied to which FPGA

and has a performance model Perfj using the layer infor-

mation, bandwidth between the FPGA chip and the DRAM

BWDRAM (i.e. 1⃝ in Fig. 2 (c)), and the inter-accelerators

bandwidth BWInter (i.e. 2⃝ or 3⃝ in Fig. 2 (c)) as inputs. The

output of the mapping algorithm is a multi-accelerator graph

G∗

sys = {G∗

Accj
}, where each accelerator j holds a mapping

graph G∗

Accj
representing the hardware dependency for each

layer. Each node of G∗

Accj
has the information on which layer

the accelerator is mapped to, the start time of the layer, and the

end time, while the edges show the dependencies and orders of

these mapped layers. An example of G∗

sys is shown in Fig. 6.

The mapping latency Lat is the maximum value of the end

time in G∗

sys. Our goal is to minimize Lat.

As introduced in Sec. III, H2H has 4 processes: Com-

putation Prioritized Mapping, Weight Locality Optimization,

Activation Transfer Optimization, and Data Locality Aware

Re-mapping. It assumes all data are stored in the host memory

which is hypothetically unlimited in the first process and then

buffers only a proportion of these data to the local DRAMs in

the second and third processes to remove the data transmission

latency. However, in a more general case without host memory,

the zero local DRAM assumption cannot be applied, so

data transmission between layers should be involved at the

beginning. Therefore, compared to H2H, CHEF-M2A first

conducts Computation and Communication Aware Mapping,

which considers weights locality and activation transmission

together. After that, Data Locality Aware Re-mapping is

applied to further shorten the overall latency.

A. Computation and Communication Aware Mapping

Since MMMT models involve cross-backbone dependency,

each layer will have multiple predecessors and successors

(Feature 6⃝). To tackle this, in the initial mapping, we first

consider all unmapped nodes without predecessors in the

model graph and find the best mapping combinations, and

then the mapped nodes are removed from the graph. The

detailed steps are as follows. In step 1, for all the unmapped

nodes without predecessors in Gmodel, we enumerate all the

mapping combinations to allocate these nodes on {Fi{Accj}}.

Unlike H2H which assumes zero DRAM locality by storing

all weights and immediate features in the host memory at the

beginning and moving a proportion of these data to DRAM

under the DRAM budget later, CHEF-M2A stores all data

in DRAM. Therefore, CHEF needs to guarantee the DRAM

budget can hold all data during mapping. Thus, in step 2,

we conduct DRAM budget check (Feature 5⃝), i.e. for each

mapping candidate, we check if the current DRAM budget for

FPGA is possible to accommodate weights and features for the

rest of the layers. Only if for all layer types, the DRAM cost

for the rest of the layers of the same type is smaller than the

DRAM size for the FPGAs deployed with corresponding types

of accelerators, and the FPGA with maximum DRAM budget

can hold the data of the layer with maximum DRAM cost,

CHEF-M2A will accept current mapping candidate and move

to the next step.

Step 3 is to calculate the latency increment ∆Lat for all

the accepted mapping candidates. Assume layer l is mapped

to accelerator Accj , and its predecessor layer l
′

in the MMMT

model is mapped to accelerator Accj′ . For layer l, its layer

latency (e.g. the length of a box in Fig. 6) involves the

intra-accelerator latency estimated by Perfj and the data

transmission latency among accelerators. Unlike H2H, we

store weights of l in the local DRAM of Fi, so there is no

weight transmission. For feature transmission, the situation is

also more complicated since we consider the fact that multiple

accelerators are located on one FPGA. The detailed analysis

is as follows (Features 3⃝ and 4⃝). First, if Accj and Accj′

share the same DDR/HBM bank of the same FPGA, there is no

feature transmission latency, but BWDRAM will be divided by

the number of accelerators sharing the same bank. Second, if

they are on the same FPGA but connect to different banks,

features are transmitted among banks via the FPGA chip.

Third, if Accj and Accj′ are located on different FPGAs, the

feature transmission latency is calculated via BWInter. ∆Lat

is the maximum layer latency of these unmapped nodes. In step

4, we select the mapping candidate that results in the minimum

∆Lat and remove the mapped nodes from the MMMT model

graph. G∗

sys is also updated with new mapped nodes.



8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

B. Data Locality Aware Re-mapping

Next, CHEF-M2A conducts a re-mapping operation that

reallocates a layer from its source accelerator to a new

destination accelerator, on which its neighbors (predecessors

or successors) are mapped with the following steps. Step 1,

for all the nodes in Gmodel, if its neighbor is not on the same

accelerator, we attempt to re-map the node to its neighbor’s

accelerator (e.g. the circled layer on ’acc0’ in Fig. 6 (a) is

moved to ’acc1’ in Fig. 6 (b)). Step 2, for each re-mapping

attempt, we conduct the DRAM budget check. The latency

after re-mapping is calculated only if the DRAM budget is

satisfied. Step 3, the re-mapping attempt is accepted if the

MMMT model latency is shortened (e.g. Lat in Fig. 6 is

shortened from 0.224s to 0.222s). G∗

sys is also updated. Steps

1-3 are repeated until no node can be re-mapped for better

results.

VI. SIMULATOR

Based on CHEF-A2F and CHEF-M2A, we develop a sim-

ulator to estimate the latency of MMMT models for different

clusters. The simulator is composed of 4 parts: the configura-

tion of the FPGA cluster, resources and performance models

for accelerator IPs, the definition of the MMMT model, and

our CHEF scheduling algorithm.

The configuration of the cluster. In this part, we first define

the FPGAs that are used in the cluster. The information on

each FPGA includes the frequency of the FPGA, the number of

on-chip DSPs and BRAMs, the number of DDR/HBM banks

in the off-chip DRAM, the size of each DDR/HBM bank, and

the DDR/HBM bandwidth BWDRAM . Second, we include

the P2P bandwidth between arbitrary two FPGAs BWinter.

If FPGA 1 and FPGA 2 in Fig. 2 (b) are connected via 2⃝,

BWinter is the PCIe bandwidth. If they are connected via

3⃝, which is the same as Fig. 2 (a), BWinter is half of the

FPGA-to-host bandwidth.

Accelerator IPs. Our simulator enables users to design

customized accelerator IPs with self-developed resource and

performance models. Currently, we have established model

templates for Conv IPs and FC IPs based on XFER [24] and

LSTM IPs based on [26] with different parallelism degrees.

For each template, the resource model estimates the number

of DSPs, BRAMs costs under their parallelism degree, and

the DRAM costs for each layer. The performance model

calculates the latency for each layer both including the features

transfer with the predecessor layers and without inter-layer

data communication.

Definition of the MMMT model. In each MMMT model,

we first define layer information including the layer type and

the layer parameters for each layer. For Conv layers, the layer

parameters include the number of output channels, the number

of input channels, output feature column size, output feature

row size, weight kernel size, stride, and padding size. For

FC layers, the parameters only involve the number of output

channels and the number of input channels. For LSTM layers,

embedded vector dimension, the number of hidden states, and

the number of LSTM cells are involved. Second, the data

dependency between different layers is defined.

TABLE II
MMMT DNNS

Model Backbone Layer Types Layers

VLocNet [2] ResNet-50 variants CNN, FC 141

CASUA-SURF [27] ResNet-18 variants CNN 44

VFS [16] VGG and VD-CNN variants CNN, FC 48

FaceBag [28] ResNet variants CNN, FC 51

CNN-LSTM [29] ConvNet and LSTM variants CNN, LSTM 20

CHEF scheduling algorithm. Based on the algorithms in-

troduced in Sec. IV and Sec. V, we generate the optimized

scheduling strategy given the FPGA clusters, accelerator IPs,

and the MMMT model. CHEF-A2F records the accelerator-to-

FPGA deploying information {Fi{Accj}} indicating which IP

is deployed to which FPGA and how many accelerators of this

IP are on the FPGA. Given the accelerator deployment, CHEF-

M2A records the mapping scheme G∗

sys including which layer

is mapped to which accelerator, and the start and end times

for each layer. The resultant inference latency Lat is the end

time of the last layer.

VII. EXPERIMENTS

In this section, we first implement the MMMT model on

the public XACC server and compare the end-to-end latency

with that estimated by the simulator to validate the correctness

of the algorithm. Secondly, we analyze the effectiveness of re-

deploying and re-mapping optimization steps in CHEF on 3

practical FPGA clusters both at the edge level and at the cloud

level. Then, we show the overall effectiveness of CHEF by

comparing it with the SOTA MMMT models to heterogeneous

clusters scheduling algorithm H2H. Finally, a series of ablation

studies for search time and latency are presented to validate the

effectiveness and efficiency of CHEF-A2F and CHEF-M2A.

A. Experimental Setup

TABLE III
HETEROGENEOUS EDGE CLUSTERS

Name Used in Configuration

Cluster 1 H2H [1]
VC707+ZCU102+ZC706+XCKU060+

XC7Z045+VCU118

Cluster 2 VMSS [12] U50LV+U30

Cluster 3 XACC [13] U280+U250

Heterogeneous Cluster of FPGAs. Table III summarizes

3 heterogeneous FPGA clusters that have been applied in

previous research and industrial applications. Cluster 1 adopts

m = 6 different Xilinx FPGAs that are applied in H2H with 6

developed IPs. Cluster 2 uses the VMSS edge server developed

by Xilinx for smart cities (m = 2) with 12 IPs. The XACC in

Cluster 3 is a public multi-FPGA cloud server established by

UIUC (m = 2) with 8 IPs. H2H uses a CPU host to connect

all FPGAs via Ethernet, while VMSS is equipped with PCIe

interfaces for direct P2P communication. XACC supports both

P2P communication and host-to-FPGA communication. To

show the training performance on various P2P communication

bandwidths, we test CHEF on these clusters with different

BWinter = 0.125 GB/s, 3 GB/s, 15 GB/s. 0.125 GB/s
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represents a low BW communication approach such as Gigabit

Ethernet [30] (1Gbps=0.125GB/s), while 3 GB/s represents a

medium BW connection such as PCIe (tested in Sec. VII-B).

15 GB/s represents a high BW. For example, with TCP/IP

stack, the 100 GbE Smart NICs achieve around 100-140 Gbps

BW with an average of 15 GB/s [31].

Heterogeneous MMMT models. Table II summarizes 5 het-

erogeneous DNNs used in the evaluation, spanning different

domains. The models use CNNs, FCs, or LSTMs as backbones

(Feature 1⃝) and typically involve 3 or 4 backbones with cross-

backbone data dependencies Feature 6⃝). For VLocNet, VFS,

FaceBag, and CNN-LSTM, the number of layer types n = 2,

while n = 1 for CASUA-SURF.

Baselines.

• To show the effectiveness of the re-deploying and re-

mapping optimizations in Sec. VII-C, we compare the

resultant latency with the following steps: Step 1 is the

latency with initial deploying in CHEF-A2F and initial

mapping in CHEF-M2A, Step 2 is the latency with re-

mapping during the initial deploying, and Step 3 is the

latency with both re-deploying in CHEF-A2F and re-

mapping in CHEF-M2A.

• To show the overall effectiveness of CHEF in Sec. VII-D,

we compare it with the SOTA work H2H.

• In the ablation studies in Sec. VII-E, to validate the

effectiveness of CHEF-A2F, we compare our deployment

search approach with DP, which is a commonly used

search algorithm to find optimal solutions for Knapsack

problems. To validate the effectiveness of CHEF-M2A,

the optimal solution is provided by enumerating all

possible layer-to-accelerator mapping combinations.

B. End-to-End Implementation (Feature 7⃝)

The proposed work is evaluated on the public UIUC HACC

Cluster [13] with one U280 and one U250 FPGA shown in

Fig. 2 (b). The working frequency for U280 is 200MHz, while

U250 works on 150MHz. The U280 is equipped with 32 HBM

banks, while the U250 is equipped with 4 DDR banks. We

first measure the on-board BWDRAM . The HBM bandwidth

is around 12 GB/s under 200MHz, and the DDR bandwidth

is around 8 GB/s under 150MHz. Then, we test the PCIe-

based P2P communication bandwidth BWinter, and BWinter

is measured to be 3 GB/s. To validate the accuracy and cor-

rectness of CHEF, we conduct end-to-end implementation on

the CASUA-SURF [27], VFS [16], and FaceBag [28] models,

and each model contains more than 40 layers. We developed

8 candidate IPs and established analytical models. Each IP is

designed and coded with TAPA [32]. The obtained IP cores

have bitstream generated in Xilinx Vitis (v2022.2). For each IP,

we compare the latency estimated by the performance model

and that measured on-board. The deviations for estimated

latency compared to on-board tested latency for these IPs range

from -0.94% to -6.66%, which proves that the performance

models are accurate for latency estimation.

With the configuration of the FPGA cluster, the acceleration

IPs, and the definition of the MMMT model, we apply CHEF

to acquire the scheduling information including the accelerator

TABLE IV
END-TO-END RUNTIME OF MMMT MODELS ON HACC: MODELING VS.

ON-BOARD MEASUREMENT.

Model Modeling (s) On-board Measurement(s) Error Rate

CASUA-SURF 0.0307 0.0336 -8.63%

VFS 0.1475 0.1600 -7.81%

FaceBag 0.0159 0.0168 -5.36%

deploying information {Fi{Accj}} and the mapping scheme

G∗

sys automatically generated by the simulator. The simulator

also generates an estimated latency Lat. Then, we implement

end-to-end inference of the three models on the cluster using

the scheduling information and measure the on-board execu-

tion latency. As shown in Table IV, the deviation for the end-

to-end testing of each complete model is less than 10% which

validates that the estimated latency of CHEF is relatively

accurate. After validating the correctness of the CHEF and the

accuracy of its simulator, we use the simulator for a series of

comparisons and ablation studies in the following experiments.

C. Effectiveness of Re-deploying and Re-mapping

Fig. 7 shows the system latency of the MMMT models

listed in Table II. The X-axis represents different optimization

steps in CHEF, i.e. without re-deploying or re-mapping, with

only re-mapping, and with both re-deploying and re-mapping.

We test the latency of the 3 clusters listed in Table III under

various P2P bandwidths. It can be seen that the re-deploying in

CHEF-A2F and re-mapping in CHEF-M2A can significantly

reduce the overall latency in these cases. For example, in Fig. 7

(a) for Cluster 1, the maximum latency reductions caused by

the combination of re-deploying and re-mapping are 84%,

87%, and 88% under low, medium, and high P2P bandwidth,

respectively.Re-deploying and re-mapping effectively improve

the inference performance for different FPGA clusters under

various P2P bandwidths.

D. Comparison with H2H [1]

Fig 8 shows the inference latency speedup of the MMMT

models compared to H2H [1]. We compare the latency on

the three heterogeneous cluster platforms under low, medium,

and high bandwidth. H2H adopts fixed accelerators, while our

work searches optimized accelerator combinations and deploys

them on the clusters. The inference latency achieved by CHEF

is significantly shortened compared to the H2H baseline.

The speedup comes from two aspects. On one hand, H2H

deploys one fixed accelerator on one FPGA, while our pro-

posed CHEF is flexible to deploy one or multiple accelerators

on each FPGA. Take Cluster 2 under the low P2P bandwidth

as an example, CHEF deploys 3 accelerators for VLocNet and

5 accelerators for CASUA-SURF. Compared to H2H, CHEF

considers a larger design space, and it is feasible to search for

a beneficial deployment scheme with superior mapping results.

On the other hand, H2H suffers from an intenser inter-FPGA

communication bottleneck compared to CHEF. In CHEF, all

weights are stored in local DRAM, while H2H stores parts

of weights in the host memory which leads to extra weights

transfer workload (Feature 5⃝). Besides, immediate features
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Fig. 7. Latency comparison of re-deploying and re-mapping. The X-axis represents three optimization steps: Step 1 is after initial deploying and initial
mapping, Step 2 is after the re-mapping under the initial accelerator deployment, and Step 3 is the final result after both re-deploying and re-mapping. (a)
Comparisons for Cluster 1. (b) Comparisons for Cluster 2. (c) Comparisons for Cluster 3. The re-deploying in CHEF-A2F and re-mapping in CHEF-M2A
can significantly decrease the resultant inference latency for these clusters.
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Fig. 8. The latency speedup compared to H2H. (a) The speedup in Cluster
1. (b) The speedup in Cluster 2. (c) The speedup in Cluster 3. Compared
to H2H, the proposed CHEF achieves 1.09-49.43 inference speedup in these
clusters.

are transmitted back and forth via the CPU host if adjacent

layers are not located on the same accelerators. However,

as mentioned in Sec V, in CHEF, features do not need to

be moved as long as two adjacent layers share the same

HBM/DDR bank (Feature 3⃝). If data-dependent layers are

not allocated to the same memory bank but are mapped to

accelerators on the same FPGA, features are transmitted via

the FPGA chip. The on-chip transmission is more efficient

than FPGA-to-FPGA transmission. Only when adjacent layers

mapped to different FPGAs, the inter-board feature trans-

mission is required (Feature 4⃝). Therefore, as presented in

Fig 8, CHEF achieves significant speedup, especially under

lower P2P bandwidth. To further validate that Features 3⃝-

5⃝ of CHEF successfully reduces communication overhead,

we present the inter-accelerator communication ratio of CHEF

and H2H in Table V. The ratio is calculated using the sum of

the accelerator-to-accelerator communication latency divided

by the accumulation of layer time costs for each accelerator.

As illustrated in Table V, the inter-accelerator communi-

cation ratio is less than 15% under various P2P bandwidths

for different clusters, while the ratio for H2H is severely

impacted by the P2P bandwidth. For example, under low

bandwidth, the inter-accelerator communication takes up 22%-

91% of the accumulated inference latency. Compared to H2H,

CHEF suffers less from the cross-accelerator communication

overhead.

E. Analysis of CHEF-A2F and CHEF-M2A Algorithms

As mentioned in Sec. IV, finding an optimal solution is

time-consuming, so we propose a two-stage accelerators-to-
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TABLE V
INTER-ACCELERATOR COMMUNICATION RATIO BETWEEN H2H AND

CHEF (OURS)

Model P2P BW
Cluster 1 Cluster 2 Cluster 3

H2H CHEF H2H CHEF H2H CHEF

VLocNet
low 54.91% 14.07% 82.76% 2.22% 83.22% 0.05%

medium 11.76% 2.88% 12.83% 5.62% 13.20% 4.04%
high 2.87% 0.61% 2.86% 1.85% 2.95% 0.41%

CASUA
-SURF

low 49.16% 5.40% 75.44% 11.43% 71.33% 5.82%
medium 11.22% 0.94% 11.34% 4.30% 9.39% 1.89%

high 2.88% 0.80% 2.50% 0.93% 2.03% 0.61%

VFS
low 49.97% 3.72% 82.60% 9.74% 79.86% 0.30%

medium 6.11% 0.74% 17.75% 3.12% 15.85% 0.58%
high 1.60% 0.24% 3.98% 0.84% 3.30% 0.33%

FaceBag
low 80.92% 3.19% 90.84% 0.00% 89.21% 0.00%

medium 22.74% 0.89% 28.55% 1.82% 24.99% 1.70%
high 6.61% 0.23% 7.10% 0.52% 5.99% 0.04%

CNN-
LSTM

low 22.47% 0.10% 79.36% 0.10% 76.51% 0.06%
medium 4.98% 0.83% 13.85% 0.00% 11.95% 0.00%

high 1.07% 0.17% 3.11% 0.04% 2.65% 0.00%

FPGAs deployment approach to co-optimize hardware de-

ployment as well as accelerator mapping and thus search

for a near-optimal solution. In this section, we validate the

effectiveness and efficiency of CHEF-A2F and CHEF-M2A

solving the MDMK problem in 1 by comparing the resultant

inference latency (Lat.) and search time (ST) with the optimal

solution (Feature 2⃝). Results show that CHEF can achieve

near-optimal solutions with significantly less searching time.

TABLE VI
THE DEPLOYMENT PERFORMANCE AND SEARCH TIME COMPARISON

DP (Optimal) CHEF-A2F (ours)

Model FPGAs Lat. (s) ST (s) Lat. (s) ST (s)

VLocNet*
2 0.0446 3.62 (16X) 0.0505 (1.13X) 0.220
3 0.0386 223 (326X) 0.0386 (1X) 0.683
4 0.0304 1.97E4 (9610X) 0.0304 (1X) 2.05

CASUA
-SURF*

2 0.0119 3.24 (21X) 0.0131 (1.10X) 0.151
3 0.00838 196 (261X) 0.00838 (1X) 0.750
4 0.00691 1.72E4 (9556X) 0.00691 (1X) 1.80

VFS*
2 0.0257 9.27 (22X) 0.0260 (1.01X) 0.424
3 0.0212 810 (323X) 0.0212 (1X) 2.48
4 0.0212 9.62E4 (10378X) 0.0212 (1X) 9.27

FaceBag*
2 0.000955 3.87 (18X) 0.00117 (1.23X) 0.220
3 0.000888 226 (309X) 0.000931 (1.05X) 0.732
4 0.000808 1.93E4 (9650X) 0.000808 (1X) 2.00

CNN-
LSTM*

2 0.0103 2.61 (17X) 0.0110 (1.07X) 0.154
3 0.0103 184 (322X) 0.0103 (1X) 0.572
4 0.0103 1.65E4 (10060X) 0.0103 (1X) 1.64

We first validate the effectiveness of the proposed CHEF-

A2F deployment approach. Table VI shows the deployment

comparison of CHEF-A2F and DP. We compare the estimated

system latency and the search time on Cluster 3 with 3

candidate IPs and increase the number of FPGAs m from 2

to 4. For both DP and the proposed CHEF-A2F deployment

approach, we apply the same CHEF-M2A mapping algorithm

to generate the mapping scheme for each iteration of hard-

ware deployment. Since DP searches all possible deployment

schemes and finds an optimal solution, it will be time-

consuming to map all layers of the MMMT models in each

iteration. Therefore, we perform the comparison mapping sub-

networks that contain only 9 or 10 layers for different models,

and we use * to indicate only part of the layers is involved in

the models in later results. As shown in Table VI, CHEF-A2F

can achieve near-optimal performance for all the scenarios,

while searching for an optimal deploying scheme demands a

great mass of time. For example, when the number of FPGAs

increases to 4, DP takes nearly 27 hours to find an optimal

solution for a sub-network of VFS with 10 layers, which is

10378 times compared to CHEF-A2F. Thus, searching for an

optimal solution via DP for the whole VFS with 48 layers

is estimated to take around 5 days, which is inefficient in

practical applications. Compared to DP, CHEF-A2F can find

a near-optimal solution for the whole VFS in 15.6s. It should

be noted that we only consider 3 IP candidates. When we

increase the IPs to 4, DP fails to complete the search within

15 days even for sub-networks, while CHEF is efficient in

searching for complete MMMT models with more IPs in an

acceptable time. The search time will be discussed in detail

in Fig. 9.

TABLE VII
THE MAPPING PERFORMANCE AND SEARCH TIME COMPARISON

Optimal CHEF-M2A (ours)

Model Accs. Lat. (s) ST (s) Lat. (s) ST (s)

VLocNet*
2 0.0547 2.85 (130X) 0.0555 (1.01X) 0.0220
3 0.0555 159 (6115X) 0.0599 (1.08X) 0.0260
4 0.0522 3107 (21727X) 0.0522 (1.00X) 0.1430

CASUA
-SURF*

2 0.0133 1.23 (87.9X) 0.0134 (1.01X) 0.0140
3 0.0125 46.4 (1719X) 0.0128 (1.02X) 0.0270
4 0.0125 694 (8165X) 0.0128 (1.02X) 0.0850

VFS*
2 0.0235 2.75 (131X) 0.0261 (1.11X) 0.0210
3 0.0212 157 (1826X) 0.0246 (1.16X) 0.0860
4 0.0212 3453 (11472X) 0.0212 (1X) 0.3010

FaceBag*
2 0.00120 2.68 (223X) 0.00121 (1.01X) 0.0120
3 0.00109 158 (4647X) 0.00120 (1.10X) 0.0340
4 0.000997 3390 (25299X) 0.00117 (1.17X) 0.1340

CNN-
LSTM*

2 0.0104 2.21 (205X) 0.0110 (1.06X) 0.0108
3 0.0104 127 (5799X) 0.0104 (1X) 0.0219
4 0.0103 2295 (18811X) 0.0103 (1X) 0.122

Then, we validate the effectiveness of CHEF-M2A. Ta-

ble VII shows the mapping comparison of CHEF-M2A and

the optimal solution in terms of estimated system latency

and search time when the number of deployed accelerators

increases from 2 to 4. The optimal solution is obtained by

enumerating all possible mapping combinations and finding

the one with the shortest system latency. Given N available

accelerators and an MMMT model with M layers, the com-

plexity of finding the optimal solution is NM . Mapping all

layers of MMMT models with 4 accelerator candidates ranging

from 40 layers to 150 layers is time-consuming. Therefore,

we also compare the performance mapping only 9-10 layers

for the MMMT models. As shown in Table VII, CHEF-

M2A achieves near-optimal performance for all the scenarios,

while searching for an optimal mapping scheme requires

tremendous time. For example, deployed with 4 accelerators,

finding an optimal solution mapping a mere 10-layer VLocNet

takes nearly 1 hour, while CHEF-M2A costs only 0.1430s.

CHEF-M2A achieves 21727 times speedup in search time for

mapping. If we search for the optimal solution for the whole

141 layers, the optimal solution is estimated to take 6.4×1e78
hours, which is impossible to apply in practical applications,

while CHEF-M2A can find a near-optimal solution in 13.5s.

To further present the overall efficiency of CHEF, we display

the search time when CHEF is applied to schedule complete
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Fig. 9. The search time of CHEF with 8 candidate IPs when the number of
FPGAs increases to 4. The search time ranges from 0.66s to 78s.

MMMT models on m = 4 FPGAs with 8 candidate IPs.

As can be seen in Fig. 9, CHEF searches for near-optimal

deploying and mapping schemes for MMMT models ranging

from 20 layers to 141 layers in minutes or seconds. If new

models are given in the application, our proposed approach is

feasible and efficient to generate the scheduling scheme in an

acceptable design time.

VIII. CONCLUSION

This work proposes CHEF to enable efficient heterogeneous

MMMT models deploying on heterogeneous clusters with

FPGAs. We propose CHEF-A2F, a two-stage accelerators-

to-FPGAs deployment approach to select efficient accelera-

tors IPs and deploy them on given heterogeneous clusters

of FPGAs considering the mapping performance. Then, we

propose CHEF-M2A to map MMMT models to the deployed

accelerators. We are the first attempt to implement end-to-end

MMMT model inference in heterogeneous clusters of FPGAs

which provides benchmarks and baselines for future works.
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