EQ-ViT: Algorithm-Hardware Co-Design for End-to-End Acceleration of Real-Time Vision Transformer Inference on Versal ACAP Architecture

International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS) 2024 P. Dong*, J. Zhuang*, Z. Yang, S. Ji, Y. Li, D. Xu, H. Huang, J. Hu, A.K. Jones, Y. Shi, Y. Wang, P. Zhou

*Co-first authors

Massachusetts Institute of Technology; Brown University; Northeastern University; North Carolina State University; Syracuse University; University of Maryland, College Park; University of Pittsburgh; University of Notre Dame

peggy281@mit.edu jinming_zhuang@brown.edu yanz.wang@northeastern.edu peipei_zhou@brown.edu

Autonomous Driving

Autonomous Driving

Autonomous Driving

Radio Access Network

Autonomous Driving

Radio Access Network

FPGA vs. GPU?

FPGA vs. GPU?

Hardware Specification

Platform	FP32	INT8	Off-Chip BW
NVIDIA A10G 8nm GPU	35 T	140 T	600 GB/s
AMD U250 16nm FPGA	1.2 T	6.95 T	77 GB/s

DeiT-T Latency

FPGA U250, HeatViT

A10G GPU, TensorRT

Hardware Specification

DeiT-T Latency

EMBEDDED SYSTEMS WEEK

📕 FPGA U250, HeatViT 🛛 📕 A

📕 A10G GPU, TensorRT

Hardware Specification

DeiT-T Latency

FPGA U250, HeatViT 🛛 📕 A10G GPU, TensorRT

Hardware Specification

EMBEDDED SYSTEMS WEEK

FPGA U250, HeatViT 🛛 📕 A10G GPU, TensorRT **Hardware Specification** 60 **Platform** INT8 **FP32** 50.3 BW 50 NVIDIA A10G 35 T 140 T 600 GB/s 40 8nm GPU Latency (ms) 30 AMD U250 6.95 T 1.2 T 77 GB/s 16nm FPGA 20 7.3 10 2.2 1.78 0 **FP32** INT8

FPGA + Vector Processor?

DeiT-T Latency

EMBEDDED SYSTEMS WEEK

• Time breakdown of EQ-ViT on Versal and TensorRT on A10G GPU for DeiT-T

• 1 Non-MM kernels with <1% operations, take about 41% time

- 1 Non-MM kernels with <1% operations, take about 41% time
- 2 Tensor core utilization is not high enough (MM): ~23 TOPS, 16% of INT8 throughput (140TOPS)

- 1 Non-MM kernels with <1% operations, take about 41% time
- 2 Tensor core utilization is not high enough (MM): ~23 TOPS, 16% of INT8 throughput (140TOPS)
- 3 TensorRT adopts an implicit quantization policy: BMM FP32 data type

- 1 Non-MM kernels with <1% operations, take about 41% time
- 2 Tensor core utilization is not high enough (MM): ~23 TOPS, 16% of INT8 throughput (140TOPS)
- 3 TensorRT adopts an implicit quantization policy: BMM FP32 data type

- 1 Non-MM kernels with <1% operations, take about 41% time
- 2 Tensor core utilization is not high enough (MM): ~23 TOPS, 16% of INT8 throughput (140TOPS)
- 3 TensorRT adopts an implicit quantization policy: BMM FP32 data type

- 1 Non-MM kernels with <1% operations, take about 41% time
- 2 Tensor core utilization is not high enough (MM): ~23 TOPS, 16% of INT8 throughput (140TOPS)
- 3 TensorRT adopts an implicit quantization policy: BMM FP32 data type

- Inputs
 - 1) Transformer models
 - 2) Accuracy constraint
 - 3) Latency constraint
 - 4) Hardware constraints

- Inputs
 - 1) Transformer models
 - 2) Accuracy constraint
 - 3) Latency constraint
 - 4) Hardware constraints

- Outputs
 - 1) Quantization strategy
 - 2) Hardware optimization strategy
 - 3) Automatic generated hardware design

- Inputs
 - 1) Transformer models
 - 2) Accuracy constraint
 - 3) Latency constraint
 - 4) Hardware constraints

- Outputs
 - 1) Quantization strategy
 - 2) Hardware optimization strategy
 - 3) Automatic generated hardware design

HW Capability

Accuracy& Latency Cons

- Inputs
 - 1) Transformer models
 - 2) Accuracy constraint
 - 3) Latency constraint
 - 4) Hardware constraints

- Outputs
 - 1) Quantization strategy
 - 2) Hardware optimization strategy
 - 3) Automatic generated hardware design

- Inputs
 - 1) Transformer models
 - 2) Accuracy constraint
 - 3) Latency constraint
 - 4) Hardware constraints

- Outputs
 - 1) Quantization strategy
 - 2) Hardware optimization strategy
 - 3) Automatic generated hardware design

- Inputs
 - 1) Transformer models
 - 2) Accuracy constraint
 - 3) Latency constraint
 - 4) Hardware constraints

- Outputs
 - 1) Quantization strategy
 - 2) Hardware optimization strategy
 - 3) Automatic generated hardware design

- Inputs
 - 1) Transformer models
 - 2) Accuracy constraint
 - 3) Latency constraint
 - 4) Hardware constraints

- Outputs
 - 1) Quantization strategy
 - 2) Hardware optimization strategy
 - 3) Automatic generated hardware design

• Specialized MM kernel design

• Specialized MM kernel design

• Specialized MM kernel design

EMBEDDED SYSTEMS WEEK

• Specialized MM kernel design

3D-Parallelism on two hierarchies: 3D-AIE Array (A, B, C), 3D-SIMD Instruction (PI, PK, PJ)

• Specialized MM kernel design

3D-Parallelism on two hierarchies: 3D-AIE Array (A, B, C), 3D-SIMD Instruction (PI, PK, PJ)

• Fine-grain pipelined non-MM kernel design

• Fine-grain pipelined non-MM kernel design

• Fine-grain pipelined non-MM kernel design

• Fine-grain pipelined non-MM kernel design

• Non-linear Kernels

• Fine-grain pipelined non-MM kernel design

• Non-linear Kernels

• Fine-grain pipelined non-MM kernel design

Non-linear Kernels

- Inputs
 - 1) Transformer models
 - 2) Accuracy constraint
 - 3) Latency constraint
 - 4) Hardware constraints

- Outputs
 - 1) Quantization strategy
 - 2) Hardware optimization strategy
 - 3) Automatic generated hardware design

- Inputs
 - 1) Transformer models
 - 2) Accuracy constraint
 - 3) Latency constraint
 - 4) Hardware constraints

- Outputs
 - 1) Quantization strategy
 - 2) Hardware optimization strategy
 - 3) Automatic generated hardware design

Can We Quantize ViTs into low-bit (e.g. 8) for enhanced Accuracy?

Can We Quantize ViTs into low-bit (e.g. 8) for enhanced Accuracy?

EMBEDDED SYSTEMS WEEK

Quantization Algorithm:

- ViT Quantization
 - No papers quantize ViTs into 8-bit with higher acc

Method	#Bits	DeiT-T [43]	DeiT-S [43]	DeiT-B [43]	Swin-T [33]	Swin-S [33]		
Full Precision	32/32/32	72.21	79.85	81.85	81.35	83.2		
PTO								
MinMax	8/8/8	70.94	75.05	78.02	64.38	74.37		
EMA	8/8/8	71.17	75.71	78.82	70.81	75.05		
Percentile	8/8/8	71.47	76.57	78.37	78.78	78.12		
OMSE	8/8/8	71.3	75.03	79.57	79.3	78.96		
Bit-Split	8/8/8	_	77.06	79.42	_	-		
PTQ for ViT	8/8/8	_	77.47	80.48	_	-		
FQ-ViT	8/8/8	71.61	79.17	81.2	80.51	82.71		

Can We Quantize ViTs into low-bit (e.g. 8) for enhanced Accuracy?

Quantization Algorithm:

- ViT Quantization
 - No papers quantize ViTs into 8-bit with higher acc

Method	#Bits	DeiT-T [43]	DeiT-S [43]	DeiT-B [43]	Swin-T [33]	Swin-S [33]			
Full Precision	32/32/32	72.21	79.85	81.85	81.35	83.2			
PTQ									
MinMax	8/8/8	70.94	75.05	78.02	64.38	74.37			
EMA	8/8/8	71.17	75.71	78.82	70.81	75.05			
Percentile	8/8/8	71.47	76.57	78.37	78.78	78.12			
OMSE	8/8/8	71.3	75.03	79.57	79.3	78.96			
Bit-Split	8/8/8	_	77.06	79.42	_	-			
PTQ for ViT	8/8/8	_	77.47	80.48	-	-			
FQ-ViT	8/8/8	71.61	79.17	81.2	80.51	82.71			

EMBEDDED SYSTEMS WEEK

- Two Special Data Distribution inside ViTs
 - Long-Tail Distribution

Long-Tail Distribution: Attention Matrix & Act After GELU

- Two Special Data Distribution inside ViTs
 - Long-Tail Distribution

Long-Tail Distribution: Attention Matrix & Act After GELU

- Two Special Data Distribution inside ViTs
 - Long-Tail Distribution

Long-Tail Distribution: Attention Matrix & Act After GELU

- Two Special Data Distribution inside ViTs
 - Long-Tail Distribution

Long-Tail Distribution: Attention Matrix & Act After GELU

- Two Special Data Distribution inside ViTs
 - Long-Tail Distribution

Long-Tail Distribution: Attention Matrix & Act After GELU

- Two Specific Data Distribution inside ViTs
 - Long-Tail Distribution

• Two Specific Data Distribution inside ViTs

- Long-Tail Distribution
- Substantial Outliers

• Two Specific Data Distribution inside ViTs

- Long-Tail Distribution
- Substantial Outliers

- Two Specific Data Distribution inside ViTs
 - Long-Tail Distribution
 - Substantial Outliers

- Long-Tail Distribution
- Substantial Outliers

EMBEDDED SYSTEMS

WEEK

- Long-Tail Distribution
- Substantial Outliers

EMBEDDED SYSTEMS

WEEK

Long-Tail Distribution: Attention Matrix & Act After GELU

- Two Specific Data Distribution inside ViTs
 - Long-Tail Distribution
 - Substantial Outliers

- Data Distribution inside ViTs
 - Long-Tail Distribution
 - Substantial Outliers

- Data Distribution inside ViTs
 - Long-Tail Distribution
 - Substantial Outliers

- Data Distribution inside ViTs
 - Long-Tail Distribution
 - Substantial Outliers

- Data Distribution inside ViTs
 - Long-Tail Distribution
 - Substantial Outliers

- Data Distribution inside ViTs
 - Long-Tail Distribution
 - Substantial Outliers

EQ-ViT Data Analysis

- Data Distribution inside ViTs
 - Long-Tail Distribution
 - Substantial Outliers

Long-Tail Distribution: Attention Matrix & Act After GELU

EMBEDDED SYSTEMS WEEK

Channel-wise Outlier: Fixed Layer & Fixed Channel & Fixed Data Range

EQ-ViT Software Solution

- Two Specific Data Distribution inside ViTs
 - Long-Tail Distribution
 - Substantial Outliers
- Sub-8-bit: Activation-aware Full Quantization
 - Log2 Quantization

- Two Specific Data Distribution inside ViTs
 - Long-Tail Distribution 0
 - Substantial Outliers 0
- Sub-8-bit: Activation-aware Full Quantization
 - Log2 Quantization Ο

• Two Specific Data Distribution inside ViTs

- Long-Tail Distribution
- Substantial Outliers

• Sub-8-bit: Activation-aware Full Quantization

- Log2 Quantization
- Outlier-aware Training w/ 2^AX Adaption

Two Specific Data Distribution inside ViTs

- Long-Tail Distribution
- Substantial Outliers

• Sub-8-bit: Activation-aware Full Quantization

- Log2 Quantization
- Outlier-aware Training w/ 2^AX Adaption

Layer-wise Uniform Quantization with 2^x

Two Specific Data Distribution inside ViTs

- Long-Tail Distribution
- Substantial Outliers

Sub-8-bit: Activation-aware Full Quantization

- Log2 Quantization
- Outlier-aware Training w/ 2^AX Adaption

 2^x Can be efficiently supported by Bitshift on FPGA board.

Layer-wise Uniform Quantization with 2^x

- Two Specific Data Distribution inside ViTs
 - Long-Tail Distribution
 - Substantial Outliers
- Sub-8-bit: Activation-aware Full Quantization
 - Log2 Quantization
 - Outlier-aware Training w/ 2^AX Adaption
 - w/ Token Pruning Regularization

- Long-Tail Distribution
- Substantial Outliers
- Sub-8-bit: Activation-aware Full Quantization
 - Log2 Quantization
 - Outlier-aware Training w/ 2^AX Adaption
 - w/ Token Pruning Regularization

Figure 4: Activation Quantization With Token Pruning.

• Two Specific Data Distribution inside ViTs

- Long-Tail Distribution
- Substantial Outliers

Sub-8-bit: Activation-aware Full Quantization

- Log2 Quantization
- Outlier-aware Training w/ 2^AX Adaption
- w/ Token Pruning Regularization

Figure 4: Activation Quantization With Token Pruning.

• Application accuracy performance

On ImageNet: EQ-ViT can enhance task accuracy up to 2.4% over the baseline, better up to 6.2% higher than other SOTA;

On Cifar-100: EQ-ViT can enhance task accuracy up to 1.4% over the baseline, better up to 1.8% higher than other SOTA.

Application accuracy performance

On ImageNet: EQ-ViT can enhance task accuracy up to 2.4% over the baseline, better up to 6.2% higher than other SOTA;

On Cifar-100: EQ-ViT can enhance task accuracy up to 1.4% over the baseline, better up to 1.8% higher than other SOTA.

• Application accuracy performance

On ImageNet: EQ-ViT can enhance task accuracy up to 2.4% over the baseline, better up to 6.2% higher than other SOTA; **On Cifar-100**: EQ-ViT can enhance task accuracy up to 1.4% over the baseline, better up to 1.8% higher than other SOTA.

• Hardware performance comparisons across different solutions

• Hardware performance comparisons across different solutions

- Hardware performance comparisons across different solutions
 - EQ-ViT on VCK190 achieves 13.1x and 3.4x average latency reduction compared with U250, A10G

- Hardware performance comparisons across different solutions
 - EQ-ViT on VCK190 achieves 13.1x and 3.4x average latency reduction compared with U250, A10G

- Hardware performance comparisons across different solutions
 - EQ-ViT on VCK190 achieves 13.1x and 3.4x average latency reduction compared with U250, A10G
 - Estimation of EQ-ViT on VEK280 shows an another 1.7x average latency reduction over VCK190
 INT8 Latency Comparison, Batch = 6

- Hardware performance comparisons across different solutions
 - EQ-ViT on VCK190 achieves 13.1x and 3.4x average latency reduction compared with U250, A10G
 - Estimation of EQ-ViT on VEK280 shows an another 1.7x average latency reduction over VCK190
 INT8 Latency Comparison, Batch = 6

Open-Source Tool

GitHub Link: <u>https://github.com/arc-research-lab/CHARM</u>

		☆ Edit Pins ▼ ③ Unwatch 6 ▼	89 Fork 18 ▼ 🔶 Starred 119 ▼
양 main → 양 1 Branch ⓒ 1 Tags	Q Go to file	t Add file - <> Code -	About 鐐
peipeizhou-eecs Update README.md with CHARM	A 2.0 TRETS journal publication	20cc535 · last month 3 259 Commits	CHARM: Composing Heterogeneous Accelerators on Versal ACAP Architecture
CACG	Update Buffer Strategy for Multiple Accs	last year	fpga deeplearning
CDAC	Update Kernel0	10 months ago	design-space-exploration versal high-level-synthesis
CDSE	Update Templates for kernel6 int8	8 months ago	electronic-design-automation
🖿 charm	bug fixes + working flow for VCK5000	last year	heterogeneous-computing acap domain-specific-architecture versalacap
config_files	Update Bubble Free Send B	2 years ago	
example	Update Makefiles	last year	MIT license
example_new	Update FP32 Example	last year	-∧- Activity
src src	Change Stack Size to 1024	last year	 Custom properties 119 stars
src_gen	Update Buffer Type	last year	⊙ 6 watching
templates	Support xilinx_vck5000_gen4x8_qdma_2_2	02220_1 4 months ago	% 18 forks

Thank You & Welcome to Questions

EQ-ViT: Algorithm-Hardware Co-Design for End-to-End Acceleration of Real-Time Vision Transformer Inference on Versal ACAP Architecture

P. Dong*, J. Zhuang*, Z. Yang, S. Ji, Y. Li, D. Xu, H. Huang, J. Hu, A.K. Jones, Y. Shi, Y. Wang, P. Zhou

*Co-first authors

Massachusetts Institute of Technology; Brown University; Northeastern University; North Carolina State University; Syracuse University;

University of Maryland, College Park; University of Pittsburgh; University of Notre Dame

National Science Foundation

