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Abstract—Smart phones have revolutionized the availability of
computing to the consumer. Recently, smart phones have been
aggressively integrating artificial intelligence (AI) capabilities into
their devices. The custom designed processors for the latest
phones integrate incredibly capable and energy efficient graphics
processors (GPUs) and tensor processors (TPUs) to accommodate
this emerging AI workload and on-device inference. Unfor-
tunately, smart phones are far from sustainable and have a
substantial carbon footprint that continues to be dominated by
environmental impacts from their manufacture and far less so
by the energy required to power their operation. In this paper
we explore the possibility of reversing the trend to increase the
dedicated silicon dedicated to emerging application workloads in
the phone. Instead we consider how in-memory processing using
the DRAM already present in the phone could be used in place
of dedicated GPU/TPU devices for AI inference. We explore the
potential savings in embodied carbon that could be possible with
this tradeoff and provide some analysis of the potential of in-
memory computing to compete with these accelerators. While it
may not be possible to achieve the same throughput, we suggest
that the responsiveness to the user may be sufficient using in-
memory computing, while both the embodied and operational
carbon footprints could be improved. Our approach can save
circa 10–15 kgCO2e.

Index Terms—sustainability, embodied carbon, in-memory
processing, AI, inference

I. INTRODUCTION

Smart phones have changed the landscape of how com-
puting is used in society. Since their introduction, more and
more tasks have become mobile friendly to the point where
some tasks such as ticketing for air travel, map directions,
photography, and access to social networks have become
more difficult on traditional devices compared to their mobile
counterparts. Furthermore, generation after generation, these
devices continue to be called upon for increasingly complex
tasks.

This work is supported in part by NSF awards #2213701, #2217003,
#2324864, #2328972.

An enabling technology to allow this dramatic increase in
capability from smart phones has been dark silicon and cus-
tom hardware acceleration. For instance, incredibly compute
intensive algorithms like signal processing for the wireless
radio, video and auto decompression, and encryption ciphers
have been integrated into the processor with custom hard-
ware blocks. This sort of dark silicon optimization targeting
energy efficiency to satisfy the needs of increasing numbers
of complex tasks has made new capabilities possible while
maintaining or increasing the operational lifetime on a single
battery charge. The emergence of artificial intelligence (AI)
as a consumer facing tool has recently pushed these devices
to further increase dark silicon. Processors customized for the
latest phones include embedded graphics processors (GPUs)
and tensor processors (TPUs) to efficiently compute AI infer-
ence tasks.

Unfortunately, dark silicon has had an unintended side
effect. The trends to grow silicon area in spite of technology
scaling to increasing small feature sizes increases the semicon-
ductor contributions to embodied carbon in these devices [1].
Embodied carbon is more balanced with operational carbon in
traditional and server class machines [2], [3]. Moreover, the
embodied carbon is dominated by memory and storage such
as the many DRAM chips in DIMMs as well as the Flash
chips for solid-state storage in server class machines [3]–[6].
Smart phones are much more heavily dominated by embodied
carbon from chips for processing.

Thus, exploring alternate methods to compute emerging
applications efficiently with a smaller silicon area will go a
long way to reducing the carbon footprint of these devices.
Considering there are more mobile phones (circa 8.6 billion)
than people (circa 7.9 billion) as of 2022, this platform has a
huge impact on world sustainability.

Processing in DRAM has been proposed for commodity
DRAM with minimal [7]–[9] to no fundamental changes [10]–
[13] to commercial devices. We explore the most recent pro-



Fig. 1: Chip Layout for Google Tensor G3 [14].

posals to use processing in commodity DRAM to explore the
potential of eliminating the need for expensive GPU and TPU
devices to compute these expensive workloads (particularly AI
inference) and the impact to sustainability of these phones.

In this paper we explore the novel use of in-memory
processing as a sustainable replacement for using dedicated
silicon area for GPU and TPU units and potentially other ded-
icated hardware accelerators. The area of processors designed
for smart phones continues to increase in spite of continued
scaling, most recently to 4 nm and ultimately 3 nm in the latest
processors. We show that the most recent DRAM processing in
memory can improve the throughput per area (performance per
embodied CO2) and the throughput per energy (performance
per operational CO2).

In the next section we provide more details on the overhead
of dark silicon in modern smart phones.

II. PROGRESSION OF SMART PHONE PROCESSORS

The amount of dark silicon has been increasing with each
new smart phone generation [1]. In Fig. 1 we show an
annotated layout for the Google Tensor G3 chip [14] from
the Pixel 8 smart phone. The entire left side of the chip is
dedicated to the TPU, with a TPU cache in top left portion of
the chip. The bottom middle portion of the chip is dominated
by the Arm Mali-G715 GPU, which encircles its own GPU
cache. There is some dedicated hardware associated with
processing IO at the chips extremities. Finally the main core
processor is at the top right containing nine cores, an Arm
Cortex-X3 core with floating-point and vector (SIMD) units,
and four each of Cortex-A715 (big cores) and Cortex-A510
(little cores) surrounding 4MB L3 cache. In the center of
the chip is a system-level cache of 8MB. By estimating just
the portion of the chip dedicated for the GPU and TPU, this
requires approximately 50% of the chip area.

In Fig. 2 we show a similar layout for the A17 Pro chip
that powers the iPhone15 line of phones. The GPU takes most

Fig. 2: Chip Layout for Apple A17 Pro [15].

of the left quarter of the chip, while the tensor processor is
at the bottom, with system level cache between them. Like
the google processor, there is big/little layout with two high
performance cores with substantial cache real-estate. There are
four little cores with a shared cache. All told the GPU and TPU
take about a third of the chip, while the CPUs, even in their
big/little format, take less than a quarter. The remainder of the
space is dedicated for unknown dark silicon.

Li
fe

 C
yc

le
 C

ar
bo

n
Em

is
si

on
s 

(k
g 

CO
2e

)

0
10
20
30
40
50
60
70
80
90

100

12
mini

12 12
Pro

12
Max

13
mini

13 13
Pro

13
Max

14 14
Plus

14
Pro

14
Max

15 15
Plus

15
Pro

15
Max

Embodied Operational Supply chain End-of-life

Fig. 3: Life cycle carbon emissions of Apple iPhones from
iPhone 12 to iPhone 15 series [16].

Prior work has identified that embodied carbon of smart
phones has dominated their carbon footprint [1], [17], [18].
Embodied silicon can be as much as 90% of the embodied
carbon and the trends do not seem to be improving this factor.
For instance, the iPhone carbon foot print calculations for
the last four generations are shown in Fig. 3. The iPhone 12
released in 2020 has a substantially similar footprint to the
iPhone 15 which is current as of this writing. From iPhone
12 mini to iPhone 12 Pro Max, the embodied carbon is circa
55–70 kgCO2e

1. For the iPhone 15 generation this remains at
45–62 kgCO2e.

The Google Pixel phones have a similar trend such that the
embodied carbon of the Google Pixel 5 from circa 2020 ranged
from 45–67 kgCO2e (noting there was no “Pro” model for this
generation and the Pixel 6 Pro reached almost 80 kgCO2e)

1Greenhouse gas emissions are measured in weight of CO2 equivalent.
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Fig. 4: Life cycle carbon emissions of Google Pixel Phones
from Pixel 5 to Pixel 8 series [19].
TABLE I: Statistics and trends for Google, Apple smart phone
procesors. ˚Reported 4 nm but similar to 5 nm. ˚˚estimated.

Name Size
mm2 Trans. Year Fab

Size Models

Snap 765G 84 3B 2019 7nm 4a, 5a, 5 Pro
A14 Bionic 88 8.5B 2020 5nm 12, Mini, Pro, Max
Tensor 108 unknown 2021 5nm 6a, 6, 6 Pro
A15 Bionic 108 15B 2021 5nm 13, Mini, Pro, Max, 14, Plus
Tensor G2 114 15.8B 2022 5nm 7a, 7, 7 Pro
A16 Bionic 113 16B 2022 4nm˚ 14, Pro, Max, 15, 15 Plus
Tensor G3 135 unknown 2023 4nm 8a, 8, 8 Pro
A17 Pro 103 19B 2023 3nm 15 Pro, Max

and that the most recent line of Pixel 8 devices ranged from
45–63 kgCO2e.

These trends seem to indicate that embodied carbon is
decreasing slightly across the different generations, which
is a welcome sign. Unfortunately, the trends in the semi-
conductor devices are that both the processes are becoming
more expensive from a carbon perspective [20], [21] and
that the area of the semiconductors are still increasing [1].
Table I shows the statistics of the processors for these phone
generations [22]. These results show, if anything, the opposite
trend compared to the embodied carbon reductions. Transistor
count has more than doubled in the last four years, and the
die size is monotonically increasing even as the fabrication
technology feature size continues to descend.

Because the embodied carbon of the smart phone includes
items beyond the chips, it is expected that these savings are
coming from the manufacturing of other devices such as the
screen, battery, etc. There remains an opportunity to make
strides in improving embodied carbon in smart phones by
finding creative ways to reduce the silicon real-estate.

One method to accomplish this is to reduce the number
of dedicated dark silicon accelerators and to better identify
those accelerators that are absolutely essential [1]. However,
from the die charts from Figs. 1 and 2 indicate that alternative
solutions to accelerating AI tasks from using the tensor and
graphics processing accelerator can significant reduce chip
area. We explore this in the next section.

III. SUSTAINABLE INFERENCE IN-MEMORY

Numerous proposals demonstrate in-DRAM computing us-
ing charge-sharing [7]–[9] or by intentionally violating mem-

TABLE II: GEMV and GEMM dimensions from [23], [24]

Model ID M N K ID M N K
LLaMA V0 1 22016 8192 M0 8192 22016 8192
LLaMA V1 1 8192 22016 M1 8192 8192 22016

LLaMA-2 V2 1 8192 8192 M2 8192 8192 8192
LLaMA-2 V3 1 28672 8192 M3 8192 28672 8192
LLaMA-2 V4 1 8192 28672 M4 8192 8192 28672

TABLE III: Memory organization and architectural parameters

DRAM
Memory Controller 8 kB row size, FR-FCFS scheduling

Main Memory DDR4-2400, 1 channel, 1 rank, 8 devices + ECC
DRAM chip 4 banks, 1 kB row size, 1024 rows per subarray

ory timing parameters [12], [26]. These approaches leverage
the use of DRAM micro instructions for commodity DRAM
with minimal [7]–[9] to no fundamental changes [10]–[13]
on commercial devices. We leverage the SIMDRAM [9] and
Count2Multiply [27] approaches to implement tensor ker-
nels from large language models (LLMs) LLaMA [23] and
LLaMA [24] shown in Table II [27]. Our DRAM parameters
are relayed in Table III. We normalized the results to a
NVIDIA RTX 3090 GPU implementation.

Fig. 5 presents throughput and throughput per Watt and area
normalized to the RTX 3090 GPU baseline. The in-memory
accelerators cannot meet the performance of the server class
GPU (Fig. 5a). However, the throughput per energy (Fig. 5b)
and throughput per area (Fig. 5c), SIMDRAM configurations
still provide competitive results while Count2Multiply consis-
tently outperforms the GPU. While this comparison is against
a server class GPU. So called “embedded” GPUs tend to be
smaller and have fewer SIMD arrays to keep their device
power down. However, the architecture of their SIMD arrays is
fundamentally similar to their server class counterparts. Thus,
their performance per Watt and area tends to be consistent [28],
which makes these results similarly consistent.

Based on the in-memory capability we explored the savings
from removing the GPU and TPU from the processor footprint
of the smart phone. We this savings in three scenarios, that
the processor contributes 50%, 30%, and 20% of the total
embodied carbon to the phone. We show the new carbon
footprint for Google phones in Fig. 6 and the same for Apple
phones in Fig. 7. Based on these results we determine that this
approach can reduce embodied carbon between 11.3 kgCO2e
and 19.5 kgCO2e with an average savings of 14.9 kgCO2e for
Google phones and saving as much as 25% of the embodied
carbon footprint. For apple devices the values range from
7.4 kgCO2e to 11.6 kgCO2e with an average savings of
9.2 kgCO2e, saving as much as 17% of the embodied carbon.
To put these results into perspective, the Apple environmental
reports indicate that 128G of Flash solid-state storage is
9 kgCO2e, making these savings quite valuable.

IV. CONCLUSIONS AND FUTURE WORK

Embodied carbon is a significant source of carbon in
modern smart phones. In-memory computing can provide
efficient alternatives to GPU and TPU processors added into
modern smart phone processors. Our results demonstrate
that for LLMs, it may be possible to save between 7.4 and
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Fig. 5: GPU-normalized performance for ternary GEMM and GEMV [23]–[25].
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Fig. 6: Embodied carbon reduction for Google phones.
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Fig. 7: Embodied carbon reduction for Apple phones.

14.9 kgCO2e which is equivalent to the carbon cost of 106
to 212 GB of Flash. In the future we will investigate whether
there are hardware blocks that can be eliminated combined
with other sources of embodied carbon savings.
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