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Abstract

As Al continues to grow, modern applications are becoming more
data- and compute-intensive, driving the development of special-
ized Al chips to meet these demands. One example is AMD’s Al
Engine (AIE), a dedicated hardware system that includes a 2D array
of high-frequency very-long instruction words (VLIW) vector pro-
cessors to provide high computational throughput and reconfigura-
bility. However, AIE’s specialized architecture presents tremendous
challenges in programming and compiler optimization. Existing
AIE programming frameworks lack a clean abstraction to represent
multi-level parallelism in AIE; programmers have to figure out the
parallelism within a kernel, manually do the partition, and assign
sub-tasks to different AIE cores to exploit parallelism. These signif-
icantly lower the programming productivity. Furthermore, some
AIE architectures include FPGAs to provide extra flexibility, but
there is no unified intermediate representation (IR) that captures
these architectural differences. As a result, existing compilers can
only optimize the AIE portions of the code, overlooking potential
FPGA bottlenecks and leading to suboptimal performance.

To address these limitations, we introduce ARIES, an agile multi-
level intermediate representation (MLIR) based compilation flow
for reconfigurable devices with AIEs. ARIES introduces a novel pro-
gramming model that allows users to map kernels to separate AIE
cores, exploiting task- and tile-level parallelism without restructur-
ing code. It also includes a declarative scheduling interface to ex-
plore instruction-level parallelism within each core. At the IR level,
we propose a unified MLIR-based representation for AIE architec-
tures, both with or without FPGA, facilitating holistic optimization
and better portability across AIE device families. For the General
Matrix Multiply (GEMM) benchmark, ARIES achieves 4.92 TFLOPS,
15.86 TOPS, and 45.94 TOPS throughput under FP32, INT16, and,
INTS data types on Versal VCK190 respectively. Compared with the
state-of-the-art (SOTA) work CHARM for AIE, ARIES improves the
throughput by 1.17x, 1.59x, and 1.47x correspondingly. For ResNet
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residual layer, ARIES achieves up to 22.58x speedup compared with
optimized SOTA work Riallto on Ryzen-AlI NPU. ARIES is open-
sourced on GitHub: https://github.com/arc-research-lab/Aries.
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1 Introduction

The rapid growth of compute- and data-intensive applications, such
as artificial intelligence (AI) and wireless communications, has
pushed the limits of traditional computer architectures. To address
the increasing demand for computational resources, specialized
chips have been developed [1, 2, 3, 4]. Among these, the AMD
Al-Engine (AIE) [2] stands out as a promising solution. As shown
in Figure 1, AMD AIE architecture consists of a 2D array of high-
frequency VLIW processors ranging from 20 to 400 for different AIE
device families. The AIE cores can communicate with each other
by direct memory access (DMA) through AXI stream networks
and switches. The AIE architecture adopts a multi-level scratch
pad memory-based hierarchy. While L1 memory refers to the local
memory within each AIE core, L2 memory represents the on-chip
buffers on the PL or the memory tiles shared by all of the AIE cores.
A large amount of data can be stored in the off-chip L3 memory.
AIE architecture offers a wealth of hardware resources, allowing
programmers to exploit parallelism at various levels within their
applications. However, efficiently mapping applications to AIE hard-
ware remains challenging. Figure 1 demonstrates an example of
mapping a Multi-Layer Perceptron (MLP) with two matrix multi-
plication tasks to it. To achieve higher parallelism, programmers
usually exploit (1) task-level parallelism, which maps each task
within the application to specific AIE core groups, and (2) tile-level
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parallelism, which partitions loop nests of a task into smaller tiles
and executes these tiles in parallel across multiple AIE cores. There
are also finer-grained parallelisms to be exploited inside the AIE
core, including (3) loop-level parallelism which pipelines instruc-
tions inside a loop, (4) data-level parallelism which processes mul-
tiple data elements using Single Instruction Multiple Data (SIMD)
vector engines, and (5) instruction-level parallelism which executes
multiple instructions at a time through VLIW instruction bundling.

Task-Level Parallelism
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Figure 1: Mapping multi-task program to AIE cores: Memory
cores are on-device memory featured in AMD AIE-ML [5].

The AIE’s specialized architecture provides great opportunities
for multi-level parallelism in compute-intensive tasks, but poses
challenges in programming and optimization. Many recent efforts
have focused on developing programming abstractions and opti-
mization tools for AIE, aiming to enable programmers to efficiently
exploit parallelism mapping. However, these proposed solutions
face several limitations, hindering their widespread adoption and
efficacy in fully leveraging the potential of the AIE architecture.

Challenge 1: Limited Support for Multi-Layer Applications.
Recent studies on AIE architectures [6, 7, 8, 9] have focused on
accelerating specific kernel, such as matrix multiplication or stencil
computations. However, extending these designs to support more
complex multi-layer applications often presents significant chal-
lenges even when leveraging the provided overlays. This includes
tasks such as workload partitioning on heterogeneous components
and inter-layer communication control, which limits the productiv-
ity of AIE architectures for multi-layer applications.

Challenge 2: Fragmented Abstraction for Multi-Level Paral-
lelism. Some recent studies propose general programming models
for AIE, such as Riallto [10] and MLIR-AIE [11]. These works mostly
adopt the dataflow model as an abstraction for AIE architectures.
Figure 2 shows an example in Riallto, where each kernel needs to be
assigned to a specific AIE core in the 2D array (Lines 3-4). Dataflow
model clearly captures task-level parallelism. However, it falls short
of describing tile-level parallelism inside a task. To map a task to
multiple AIE cores, programmers have to manually break down
the loop tiles inside a task into separate kernels and place them to
particular AIE cores; this also involves manually coordinating data
transfer between loop tiles to reduce communication overheads.
To exploit intra-core parallelism, users need to insert directives
into C++ code linked to each kernel (Lines 3-4) to enable loop
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1 class MultiLayerPercepton: # Layer = 2

2 def __init__(self):

3 self.taskl = Kernel("gemm.cpp", tloc=(0,0))
4 self.task2 = Kernel("gemm.cpp", tloc=(0,1))
5 def callgraph(self, x_in, weightl, weight2):

6 out® = self.taskl(x_in, weightl)

7 return self.task2(out®, weight2)

Figure 2: Two-layer MLP in Riallto: The tloc option specifies
the location of AIE core for the kernel to be executed on.

pipeline and use intrinsic C++ vector library APIs to leverage SIMD
vectorization. This approach not only fragments the programming
abstraction between different design levels but also complicates the
exploitation of multi-level parallelism in AIE for programmers.

Challenge 3: Limited Support for Automation and Optimiza-
tion. The existing compilation flows including Riallto and MLIR-
AIE provide a Python-based exploration framework to utilize the
feature of AIEs. However, they rely on users to provide optimized
dataflow, inter-tile data movement scheme, and vectorization to
achieve good performance. MLIR-AIR [12] is an automatic compila-
tion framework for AIE architectures. However, it does not explore
the customized dataflow, data types, and buffer reuse opportuni-
ties well on the FPGA side. The AMD Vitis flow uses ADF graphs
to program AIE and HLS/RTL for Programmable Logic (PL). An
additional configuration file is required to establish connections be-
tween PL and AIE, resulting in a fragmented programming process
and difficulties in achieving holistic optimization.

Challenge 4: Portability. Various of AIE architectures exist. For
example, the Ryzen-Al Neural Processing Unit (NPU) [13] is de-
signed for consumer devices, featuring fewer AIE-ML cores along
with specialized mem-tiles as L2 memory. In contrast, Versal ACAP
[14] is geared towards high-performance computing and data cen-
ters, offering more AIE cores for greater computational power,
along with an integrated FPGA for enhanced memory buffering
and flexibility. Most existing works focus on either NPU or Versal,
and the lack of portability between these architectures makes it
labor-intensive to port designs from one platform to another.

To address these limitations, we introduce ARIES, an agile compi-
lation flow for AIE-based reconfigurable devices. ARIES provides a
novel programming model that allows programmers to define tasks
at the level of tiles, with each tile handling a portion of the origi-
nal problem size. Programmers have user-level control over these
task tiles and can scale them out across more AIE cores without
restructuring code. Additionally, ARIES offers scheduling primi-
tives to optimize the performance of each task tile running on a
single AIE core. At the IR level, ARIES introduces a unified MLIR-
based representation for AIE architectures, both with and without
FPGA, enabling holistic optimization of the target application. This
approach enhances portability and performance across different
AIE device families, including the Versal ACAP and Ryzen-AI NPU
families. To summarize, our major contributions include:

o At the programming model level, ARIES introduces a novel pro-
gramming abstraction that helps users exploit multi-level paral-
lelism in AIE with more productivity; it allows programmers to
define tasks at the granularity of tiles, and map task tiles across
AIE cores to exploit both task- and tile-level parallelism with-
out code restructuring. Additionally, ARIES provides a set of
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declarative scheduling primitives that allows users to optimize
the performance of the task tile running on a single AIE core.

Underlying the programming interface, ARIES is the first frame-
work providing a unified MLIR-based representation for AIE core,
AIE graph, and PL by using existing AIEVec, proposed ADF, and
other existing builtin dialects respectively. The unified represen-
tation enables ARIES to perform global and local optimizations.
It also provides the extensibility for customized optimizations
to be easily integrated to achieve near-theoretical performance.
The experiments show that ARIES is capable of achieving up to
87% AIE efficiency even when scaling to hundreds of AlEs.

o ARIES demonstrates portability across different AIE architectures.
With the unified IR, ARIES is able to generate low-level code
for multiple AIE architectures by extending lightweight code
generator backends, enabling the mapping of the same input
source code to both Versal ACAP and Ryzen-NPU.

2 Background and Related Work

Accelerator Designs on AIE. Prior accelerator designs have tar-
geted AIE architectures for specific applications. CHARM23 [6]
and AutoMM [15] provide design space exploration (DSE) guided
mapping solutions for matrix-multiply (MM) related applications
on Versal. CHARM24 [7] further improves the performance by op-
timizing the intra-AIE and AIE array efficiency. MAXEVA [8] also
targets dense MM acceleration on Versal. However, it focuses on the
simulation of the AIE array without considering the communica-
tion optimization between PL to AIE and between off-chip memory
to on-chip buffers thus lacking the real on-board performance anal-
ysis. AIM [16] makes full use of the heterogeneity of Versal ACAP
to speed up the large integer multiplication-based benchmarks.
SSR [17] and EQVIT [18] explore the latency and throughput trade-
off for transformer-based models on VCK190. HGC-N [19] design
sparse and dense MM accelerators on Versal VCK5000 to accelerate
the graph neural networks. SPARTA [9] leverages MLIR-AIE [11]
to accelerate stencil computations on VCK190. Nevertheless, these
works focus on specific applications without high extensibility and
portability to other applications and platforms.

Accelerator Programming Models. Many recent works have
been proposed to provide general-purpose programming models
for AIE or AIE-like dataflow accelerators. Riallto [10] introduces
dataflow abstraction for NPU programming. Ryzen-AI-SW [20] al-
lows users to run Al models on NPUs by offering a pre-built AIE
overlay that accelerates common operators. MLIR-AIR [12] and
MLIR-AIE [11] support both ACAP and NPU, but they do not cap-
ture FPGA in ACAP architecture. Alongside AIE-specific program-
ming tools, ML frameworks like Torch/XLA [21] support lowering
Torch models to TPUs [1]. Triton [22] simplifies memory and thread
management on GPUs with a tile-based abstraction and extends
support to other dataflow accelerators [4]. Allo [23] introduces a
programming model that allows users to apply decoupled hardware
customizations [24] without changing the algorithm. These acceler-
ator programming frameworks either fully automate compilation,
hiding hardware details away, or offer user-friendly abstraction to
apply hardware customization with enhanced productivity.
MLIR Compiler Infrastructure. MLIR [25] is a compiler infras-
tructure for representing and optimizing code that works across
different levels of abstraction, from high-level models like linear
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Figure 3: ARIES framework overview.

algebra arithmetic to low-level hardware instructions. MLIR allows
developers to create custom “dialects” tailored to specific domains.
A “dialect” defines custom operators and transformations at a spe-
cific abstraction level to optimize code for particular hardware
architectures. In MLIR, different dialects can be used together in the
code representation, enabling collaborative optimizations across
various domains to improve overall performance and flexibility.

3 ARIES Framework Overview

While the AIE architectures provide high throughput and energy
efficiency, its heterogeneity often poses challenges for users when
customizing computation and data communication for general ap-
plications. We propose ARIES framework that makes proper ab-
straction of the parallelism, data movement, and control logic for
the AIE-based systems. As shown in Figure 3, ARIES provides users
with a novel Python-based programming model for defining cus-
tomized applications. Then ARIES reuses the open-source Allo [23]
compilation flow to generate the initial MLIR assembly. The initial
IR will be lowered to the final IR by going through the global and
local optimizations proposed by ARIES.

During the global optimizations, ARIES optimizes the high-level
dataflow graph without hardware specifics. Then with hardware-
related features being specified, ARIES proposes local optimizations
for single AIE, AIE array, and PL respectively. For a single AIE
kernel, ARIES leverages the existing AIEVec dialect [26] and fur-
ther introduces transformations to ease the control logic for local
buffer locks. For the AIE array, we propose an Adaptive Data Flow
(ADF) dialect to describe inter-AIE parallelism and connections.
Furthermore, ARIES uses the built-in dialects, e.g., memref, scf,
and affine, with additional attributes to represent the customized
PL logic. Because both global and local optimizations are under the
unified MLIR representation, ARIES enables hardware-agnostic and
hardware-specific optimizations to be effectively applied, regardless
of the diverse architectures and programming models of various
backend devices. We also implement the code generator within
MLIR infrastructure translating ARIES final IR to AIE architectures.
For Versal, ARIES generates AIE C/C++ intrinsics for AIE cores,
C/C++ Vitis ADF APIs for AIE array, HLS C/C++ for PL, configura-
tion file for system connection, and XRT host code for controlling
the system. For NPU, ARIES generates the same AIE C/C++ in-
trinsics for AIE cores, and MLIR-AIE IR/Python binding APIs to
manage AIE core connection and host-device data movement.



FPGA 25, February 27-March 1, 2025, Monterey, CA, USA

4 ARIES Programming Model

In this section, we introduce ARIES’s Python-based programming
model to address the limitations of previous methods. We begin
with a motivational example of loop tiling for GEMM kernels, high-
lighting its challenges. We then present ARIES’s programming
model, demonstrating how its tile-based interface enhances devel-
oper productivity and exposes more opportunities for compiler
optimizations, thus providing an efficient framework for exploiting
multi-level parallelism on AIE.

4.1 Motivating Example: MLP with Tiled GEMM

We begin with a single GEMM task in the MLP. A basic GEMM
task, Cjj = Zle Aj + Bgj, can be implemented with a three-level
loop nest over indices (1,3 ,k). However, directly mapping this im-
plementation to AIE hardware results in sub-optimal performance.
Firstly, the loop dimensions I, J, and K are typically larger than the
AIE array’s size, preventing them from being fully unrolled and ex-
ecuted in parallel across AIE cores. In fact, improper unroll factors
lead to suboptimal performance. Furthermore, memory accesses
are inefficient. The inputs and outputs are too large to fit in the
on-chip L1 memory, so they can only be stored in the slower L3
memory; the lack of data locality and on-chip data reuse also leads
to decreased memory access efficiency.

1 T = int(16)

2 def gemm_tiled(A: T[I, K], B: T[K, 3], C: T[I, J]):
3 # Schedule execution order of tiles

4 for i0 in range(0, I, TI_0):

5 for jO in range(0, 3, TJ_0):

6 for k0 1in range(0, K, TK_0):

7 DMA_LOAD_L3_TO_L2(...) # On-chip data buffer
8 for i1 in range(0, TI_O0, TI_1):

9 for j1 1in range(0, TJ_0, TJ_1):

10 for k1 in range(0, TK_0, TK_1):

11 DMA_LOAD_L2_TO_L1(...)

12 # Mapped to cores for parallel execuction
13 for i2 in range(0, TI_1, TI_2):

14 for j2 in range(0, TJ_1, TJI_2):

15 for k2 in range(0, TK_1, TK_2):

16 LOAD_L1_TO_VECTOR_REGS(...)

17 for i3 in range(0, TI_2): # SIMD

18 for j3 in range(0, TJ_2):

19 for k3 in range(0, TK_2):

20 MAC(A_vec, B_vec, C_vec)

21 store(C_vec, C_L1, ...)

22 DMA_STORE_L1_TO_L2(...)

Figure 4: GEMM imperative loop tiling in vanilla Python.

To effectively map the GEMM task to AIE, loop tiling is applied.
We show a tiled GEMM example written in vanilla Python in Fig-
ure 4. It breaks down each original loop axes into multiple nested
loops (Lines 4-19) so that these new loop levels can be mapped to
different hierarchies in the hardware. The loop axes (i2,j2,k2)
define the group of inner loop tiles that are distributed across AIE
cores for parallel execution. The innermost loop axes (i3,33,k3)
are assigned to the vector engine within each AIE core for SIMD
processing. The outer loop axes, (i10,j0,k0) and (i1,j1,k1), are
temporal loops that move through different groups of inner tiles
based on the original problem size. As the temporal loops run, fre-
quently accessed data is cached in L2 and L1 memory for faster
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on-chip access (Lines 7 and 11). This approach allows explicit map-
ping from loop axis to the hardware architecture, which enables
more parallel computation. It also breaks down memory access into
smaller chunks, improving on-chip data reuse and data locality.
Loop tiling is crucial for effective mapping to AIE and taking
advantage of multi-level parallelism. However, the imperative loop
tiling approach in Figure 4 creates new challenges. First, it requires
significant effort in code restructuring; users need to create deep
nested loop structures, decide the mapping from loop levels to AIE
cores, and coordinate data movement between memory hierarchies
explicitly. Second, data reuse between loop tiles is implicit; it often
requires additional compiler analysis like polyhedral modeling [27]
to identify reusable data across the tiled loops and avoid repeated
off-chip memory access. This makes it harder to optimize on-chip
data reuse when mapping loop tiles to parallel compute units.

4.2 Tile-Based Task Abstraction

To address these challenges, ARIES introduces a tile-based task
abstraction that simplifies loop tiling by hiding aforementioned
complexities from programmers. Figure 5 shows a code example
of a tiled GEMM task in ARIES. The function computes a small
tile of the overall problem, with tiling applied to the 1, j, and k
dimensions. This breaks the original problem size into a 3D grid of
smaller tiles. When all the tiles in the grid are processed, the entire
task is complete.

1 @aries.task_tile
2 def gemm(A: T[I, K], B: T[K, 3], C: T[I, J]):

3 i, j, k = aries.tile_ranks() # Tile ranks

4 TI, TJ, TK = aries.tile_sizes() # Tile sizes

5 ti = arange(i*TI, (i+1)xTI) # I tile range

6 tj = arange(j*TJ, (j+1)*TJ) # J tile range

7 tk = arange(kxTK, (k+1)*TK) # K tile range

8 A_L1: T[TI, TK] = A[ti, tk] # Load to L1 1in core
9 B_L1: T[TK, TJ] = B[tk, tj] # Load to L1 1in core
10 C_L1: T[TI, T3] = C[ti, tj] # Load to L1 1in core
11 for i in range(0, TI):

12 for j in range(0, TJ):

13 for k in range(0, TK):

14 C_L1[i, j] += A_L1[i, k] = B_L1[k, j]

15 C[ti, tj] = C_L1 # Store partial sum

Figure 5: GEMM task with tile abstraction in ARIES — tile
ranks (Line 5) refers to the index number of tile in each dimension

Grid Semantics for Tiles. Inside the task tile, programmers can
access tile indices in the grid (Line 3), and define the computation
to be performed by each tile using its ranks and external memory
pointers. The tile size for each dimension (Line 4) can be adjusted
outside the function body based on the requirement. The seman-
tics to index a tile in the grid (Lines 3-4) is borrowed from CUDA
[28] and Triton [22]. Compared with the imperative loop tiling
approach, it makes the code more concise without compromising
expressiveness. A special case is that when a task has only one
tile in its grid. In this situation, the tile size matches the original
problem size of (I,3,K), and no tile-level parallelism is exploited
within the task.

Tile-Based Memory Abstraction. In a task tile, all its memories
are described at the granularity of a tile. The input parameters
representing external memories of a tile outside the AIE core (Line
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2) is mapped to L2 or L3 memory, and the local memory is mapped
to the L1 memory inside an AIE core (Lines 8-10). This tile-based
abstraction clearly exposes opportunities for data reuse between
task tiles by representing memory access as hyper-rectangles in
the memory space. By analyzing the overlap between the memory
regions of task tiles, the compiler can determine how to reuse
input and output data on-chip. For example, task tiles along the i
dimension in the grid share the same memory tile of B matrix, so
these memory tiles can be cached in L2 memory and broadcast to
the task tiles as needed.

Tile Scheduling for Multi-Level Parallelism. Each task tile is
designed to run on a single AIE core. However, when the number
of task tiles exceeds the available AIE cores, or tiles from different
tasks need to share these cores, a scheduling strategy is required to
distribute them efficiently to exploit task- and tile-level parallelism.
Additionally, within each core, scheduling techniques like pipelin-
ing and SIMD are needed to maximize intra-core parallelism. To
address these requirements, ARIES adopts the concept of decoupled
scheduling from Allo [23] and provides a set of scheduling primi-
tives as shown in Table 1. These allow users to customize how task
tiles are mapped across AIE cores and executed on the AIE cores
without modifying the algorithm defined in the task tile function.

Table 1: Tile scheduling primitives in ARIES - User-level con-
trol over multi-level parallelism both across and within AIE cores.

Primitive Description

Map tile(s) of a task to designated AIE core(s).

-to(tiles, cores) @ Task-level and @ Tile-level parallelism

Enable instruction pipelining at loop axis.

-Pipeline(axis, factor) © Loop-level parallelism

Apply vectorization over loops with factors.

.vectorize(axis, factor) ® Data-level parallelism

ARIES introduces (1) .to() primitive allows users to map tiles
of different tasks across AIE cores to exploit task- and tile-level
parallelism. If multiple task tiles are mapped to a single AIE core,
hidden temporal loop levels are created to schedule and execute
the tiles sequentially on that core. (2) The .pipeline() primitive
enables loop pipelining on a task tile to exploit loop-level paral-
lelism on a single AIE core. (3) The .vectorize() primitive applies
vectorized processing to certain loop axes of a task tile, leveraging
data-level parallelism in the AIE core. We provide code examples
in next subsection to demonstrate the usage of these primitives.

4.3 Task- and Tile-Level Parallelism

In this section, we demonstrate how the tiles of each task are sched-
uled to AIE cores for parallel execution. We show the code example
of a two-layer MLP in Figure 6. In this example, we use an AMD
Ryzen-AI NPU device with a 45 array of AIE cores as the hard-
ware target. The tile size for each task can be customized using the
subscript operator (Lines 3-4). Each task returns a handle, which
is used for scheduling the task on AIE cores. A schedule object is
created to apply the customization for tasko and task1 (Line 7).

Tile-to-Core Mapping. We use the . to() primitive to assign tiles
from two tasks to separate AIE core groups for parallel execution.
ARIES offers two ways to map task tiles to AIE cores: programmers
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1 # Configure task's tile sizes and task dependency
2 grid, size = (I/TI, 3/T3, K/TK), (TI, T3, TK)

3 task0® = gemm[grid, size](A, WO, B) # B = A @ WO
4 taskl = gemm[grid, size](B, W1, C) # C = B @ W1
5

6 from aries.targets import NPU

7 sch = aries.Schedule([task0®, taskl])

8 # Case 1: Automatic tiles scheduling

9 sch.to(task0.tiles(), NPU[:4, :2])

10 # Case 2: Explicit tile mapping to AIE cores

11 for (i, j, k), tile in enumerate(taskl.tiles()):
12 sch.to(tile, NPU[i1%4, 2+j%2])

Figure 6: Mapping task and its tiles to AIE cores.

can either map all task tiles to a core group (Line 9) or explicitly
assign each task tile to specific cores (Line 12). In the first case,
ARIES uses an adaptive core placement algorithm to determine
tile placement that can minimize data movement cost, explained
in Section 5.3. For the second GEMM task in our example, its task
tiles are explicitly mapped along the grid axes (i, j, ...) to AIE
cores NPU[:4, 2:4]. This causes the task tiles along the k axis to be
computed on the same AIE core in sequential order, and the partial
sums over k dimension remain on the same core. As a result, the
GEMM is computed in output-stationary dataflow fashion [29].
Cross-Tile Communication. Data movement between AIE cores
is automatically determined by the task tile placement set by the
user. When task tiles are on adjacent AIE cores, they can exchange
data through the fast DMA interface, where one core directly ac-
cesses the L1 memory of another. When the communicating task
tiles are on non-adjacent AIE cores, data can be directly transferred
via the AXIS streaming interface through hops of on-chip switches.
If a core requires inputs from multiple other cores but exceeds
its input stream channel limit, the data is first gathered in L2 /L3
memory before being sent to the destination core for processing.

4.4 Intra-Tile Parallelism

Continuing with the tiled MLP example, we demonstrate how to
optimize the task tiles mapped to each AIE core to maximize paral-
lelism within the core. The code example is shown in Figure 7.

1 axes = task0.get_loops()

2 # Loop-Tlevel parallelism: 1instruction pipeline
3 sch.pipeline(axes[0], range=(1, 64))

4 # Data-level parallelism: SIMD vectorization

5 sch.vectorize(axes, factors=[4, 8, 4])

Figure 7: Intra-core parallelism for each tile.

Loop-Level Parallelism. Users can use .pipeline() primitive
to enable instruction pipelining for the target loops within a task
tile (Line 3). This primitive inserts a directive into the low-level
generated code, allowing the single-AIE-core compiler to schedule
loop operations in a pipelined manner. The factor option specifies
the desired initiation interval as a hint to guide the low-level vendor
compiler in scheduling instructions.

Data-Level Parallelism. The .vectorize() primitive maps speci-
fied loop axes within a task tile into a format that can be processed
by SIMD instructions on a single AIE core. Specifically, this involves
an additional level of loop tiling based on the factors provided by
the user. The memory tiles within the loop are loaded into dedi-
cated vector registers, and the generated low-level code will use
SIMD-specific instructions to perform operations in parallel.
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MLIR program generated by ARIES IR builder

func.func @top_gemm(%A, %B, %C){
affine.for %i@ = 0 to I step TI_O {
affine.for %j0 = 0 to J step TJ_0 { e L3_(T)
affine.for %ke = @ to K step TK o { Off-chip
affine.for %il = 0 to TI_O step TI_1 {
affine.for %j1 = 0 to TJ_0 step TI_1 { @ L2(T)
affine.for %k1 = @ to TK_@ step TK_1 { on-chip
adf.cell @cello
affine.for %i2
affine.for %j2
@ affine.for %k2
%0ff0 = %i2 + %il + %ie
%offl = %j2 + %j1 + %jo
%off2 = %k2 + %k1 + %ke
(® adf.dma(%A[%offe,%off2][TI_2,TI_2][1,1], %A_loc)
adf.dma(%B[%off2,%0ff1][TI_2,TK_2][1,1], %B_loc)
adf.dma(%C[%off0,%off1][TI_2,TK_2][1,1], %C_loc)
func.call @gemm(%A_loc, %B_loc, %C_loc)
adf.dma(%C_loc, %C[%offe, %off1][TI_2,TK_2][1,1]

0 to TI_1 step TI_2 {
0 to TI_1 step TI_2 { OLl(S)
0 to TK_1 step Tk 2 { PEarray

nmnminemseo oo

1333
1303333

func.func @gemm(%A_loc, %B_loc, %C_loc){
affine.for %i3 = 0 to TI_2 {
affine.for %j3 = 0 to TJ_2 {
affine.for %k3 = 0 to TK_2 {
%0 = affine.load %A_loc[%i3, %k3]
%1 = affine.load %B_loc[%k3, %j3]
%2 arith.muli %@, %1 : i32
%3 = affine.load %C_loc[%i3, %j3]
%4 = arith.addi %3, %2 : i32
affine.store %4, %C_loc[%i3, %j3]
11}

Figure 8: ARIES initial IR including a single AIE, AIE array,
PL, and top configuration of a GEMM kernel.

® L1

single core

5 ARIES Representation and Optimizations

We further introduce the IR underlying the proposed programming
models in Section 5.1 and 5.2. We provide a detailed description of
the ARIES initial IR generated by the IR builder and the final IR fed
into the code generation. We then elaborate on the ARIES optimiza-
tions and automation in Section 5.3 that transform the initial IR to
the final IR, delivering significant performance improvement.

5.1 ARIES Representation Overview

ARIES IR Builder and Initial IR. ARIES leverages Allo [23] as the
IR builder to translate our frontend program to MLIR representation.
The GEMM illustrated in Figure 5 is translated into the IR shown
in Figure 8 with the same loop structure marked by 8@®-80). The
space-time transformation is presented in the function top_gemm
where loop bands 8@, 8®), 8© represent L3, L2 temporal mapping
and L1 spatial mapping respectively. To identify the spatial loops,
the adf.cell operation is created so that the For loops within its
region can be recognized as spatial mapping during the later stage.
The adf.cell supports up to one reduction loop (8(@) and two
non-reduction loops constructing a 3D array that better explores the
10 reuse opportunity. The L1 temporal loop band 8D) that describes
the computation of an AIE core is extracted in the function gemm
and called within function top_gemm. ARIES IR builder will extract
the data movement to/from the AIE using the adf.dma operations.
The adf.dma is a high-level abstraction for n-dimensional data
slicing. It moves data between two memory values, for example
in 8(D), from external memory %A (source) to the L1 local memory
%A_loc (destination) with three pairs of data slicing information
[offset0, offset1], [size0, sizel], and [stride0, stride1].

ARIES Final IR before Translation. ARIES embraces the MLIR
ecosystem, enabling the seamless composition of different dialects

Jinming Zhuang et al.

to describe our targeted heterogeneous system, including the ATE
array, AIE core, and PL. The ARIES final IR of a GEMM example is
shown in Figure 9. Overall, the GEMM is spatially mapped to two
ATEs through the reduction dimension K, and can be expressed as
A0XB0 + A1xB1 = C. The conceptual graph of the IR is presented in
snippet @ where the data is initially stored in off-chip L3 memory.
The AXI4 stream loads the data into L2 memory to enhance data
reuse. It is then transferred to the AIE array via the AXIS/PLIOs.
ARIES explores the inter-AlE data forwarding optimization that
will be introduced in Section 5.3. Instead of evicting data out of
AIE L1 memory to L2 memory, it allows the output temporary
data to be transferred to other spatial AIEs through either the
AXIS connection or shared memory. The code snippet @ serves
as the top function that instantiated the AIE array graph (9®))
called adf_cel10 and the PL function (9(©) called func_pl. It
also defines the top-level connections in 9@ between the data
streams of PL and the ports in the AIE shim interface tile. In code
snippets @, @, and @, ARIES utilizes the proposed ADF dialect, the
existing AIEVec, and MLIR built-in dialects to represent AIE array,
single AIE, and PL programs, respectively. These snippets will be
further explained in the following section.

5.2 ARIES Final IRs

ADF Dialect for AIE Array Construction. We propose an ADF
dialect for exploring inter-tile level parallelism. As illustrated in
snippet @, it exposes the IOs to the outside of the AIE array, allo-
cates multiple AIE cores, and defines the connection among AIEs.
More specifically, in the function adf_cel10 at 9@), it defines the
input and output PLIOs of the graph which corresponds to the 5
AXIS to AIE connections shown in snippet @. ARIES exposes the
10 width and placement configuration through the adf.config
operation. 9(e) sets %p1i0A0 to 128 bits and places it at interface
tile [30,4]. The adf.connect is used to establish the connection
between the port to AIE local memory as well as the connection
among AIE local memories. For example, while 9) connects PLIO
%p1i0A0 to the local memory of AIE 0, 9) performs an L1 data
forwarding between local memory of AIEO and AIE1. The corre-
sponding conceptual connection is also demonstrated in snippet @.
At last func.call (9®) is used to allocate the AIEs with the core
placement marked by [col, row].

AlIEVec Dialect for Single AIE Core. ARIES reuses the exist-
ing AIEVec dialect proposed in MLIR-AIE [11] to represent the
computation in an AIE core. The AIEVec dialect creates a precise
MLIR representation for the AIE intrinsics [30]. By using this di-
alect, ARIES provides a vector version of the intra-AIE computation
shown in snippet @. At 9@) and 9(), it packs the data in %j3 dimen-
sion by 8 and uses the vector operations to explore the data-level
(SIMD) and instruction-level (VLIW) parallelism of AIE [31].
Built-in Dialects and Directives for PL. The functions of PL are
presented by the builtin-dialects including memref, scf, affine,
etc. in snippet @. During the optimization stage, HLS-related direc-
tives including pipeline, dataflow, inline, bind_storage, and interface
will be automatically inferred to improve the performance as shown
in 9D. In the GEMM example on Versal, the on-chip BRAMs/U-
RAMs are allocated in the PL to enhance data reuse, thereby pre-
venting computation from being bounded by the off-chip memory
access. As marked by 9(K), the PL function acts as the data mover,
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9 Programmable Logic IR -- Builtin Dialects

®
m D\‘AIEO@' AIE1

func.func @adf_celle(%plioA@, %plioBe,
@ %plioAl, %plioBl, %plioC){
I® adf.config.plio(%plioA®,128b){"col,chl"=[30,4]

L3M

—/ em A0 | A1

[ L2 Mem/PL // ... More plio configs
[ AIE Array él

é adf.config.plio(%plioC,128b){"col,chl"=[31,4]}
(®adf.connect(%plioAd, %A@_loc)
@T T adf.connect(%plioB@, %BO_loc)
@%CO_IOC:call @gemm@ (%A0_loc,%Bo_loc){[25,0]}
® adf.connect(%C0_loc, %Cinl)
adf.connect(%plioAl, %A1_loc)
adf.connect(%plioBl, %B1_loc)
%Cout=call @gemm(%Cinl,%Al_loc,%B1_loc){[26,0]
adf.connect(%Cout, %plioC)}

func.func @func_pl(%A, %B, %C, %s_A@, %s_BO,
® %s_A1l, %s_Bl, %s_C)

@attributes {dataflow} {

@call @loadA(%A, %stream_A@, %stream_Al)

| call @loadB(%B, %stream_BO, %stream_B1)

| call @sendA@(%stream_A@, %s_A®)

| call @sendBo(%stream_B@, %s_BO)

| // ... More funcs push data to AIE

call @receiveC(%s_C, %stream_C)

@ call @storeC(%stream_C, %C)}

func.func @loadA(%A, %s_A@, %s_Al, ...){
affine.for %i@ = @ to TI_@ {
affine.for %j0 = @ to TJ_0 {

— AXI4 from/to DDR

81| @;_/
® 1
C

a Single AIE IR -- AIEVec Dialect

affine.for %ke = 0 to TK_0 {
affine.for %il = @ to TI_1 {
affine.for %kl = © to TI_1 {

D, Axis from/to AE
@> AXIS/Shared Mem

L (Dscf.for %j3 = @ to 32 step 8 { @ %0 = affine.load %A[%addre, %addri]
9 Top Func & Connect-- Builtin Dialects (D %0 = aievec.upd %Cin1[%i3, %j3] %1 = arith.cmpi eq, %k2, © /%k2==0
1+ vector.transfer_write %0, %C1_loc[%i3, %j3] scf.if %1 {
' : . X
1 %1 = aievec.upd %C1_loc[%i3, %j3] i %
func. func @top_gemn(%A, %B, %C){ | %2 = aievec.ups %1 {shift =Je : i8} © } :\;an.store Ko, Hsho
// %A, %B, %C initialization . I scf.for %k3 = @ to 32 step 1 { %2 = arith.cmpi eq, %k2, 1//%k2==
adf.connect(%plioA@, %s_A@) {top_config} Y93 = ai d %A1 loc[%i3, %k3 . ’ ’
@ adf.connect(%plioAl, %s_B@) {top_config} ! ) arevec.up -Loc[%i3, ! scf.if %2 {
. op s %S_ p_ g | %4 = aievec.upd %B1_loc[%k3, %j3] © affine.store %0, %s_Al
1// T‘l’re Einneﬁlo;s . w1 | %5 = aievec.concat %4, %4 Yelse{ -
® func.call @adf_cello(%plioAe, %plioBe, | %6 = aievec.mac %5, %3, %2 // ... More data split logics
%plioAl, %plioB1, %plioC) i %7 = aievec.srs %6, © }
© func.%csalBle @;usni_lpl(%iAJBl%B,%:éCc») %s_Ao, D vector.transfer_write %7, %C1_loc[%i3, %j3] o 3
) =70 B3 AL BB A5 13 }{pipeline_ii = 1, inline = off}}}}}}}}}}
return %C1_loc} // ... More func definition e.g. loadB

func.func @gemmo(%A0_loc, %B0_loc){..}
func.func @gemm(%Cinl, %A1_loc, %B1_loc){
%C1_loc = memref.alloc()

scf.for %i3 = 0 to 32 step 1 {

affine.for %i2 = 0 to TI_2 {
affine.for %k2 = @ to TJ_2 {
affine.for %i3 = @ to TI_3 {
affine.for %k3 = 0@ to TI_3 {

Figure 9: ARIES representation including single AIE, AIE array, PL, and top configuration of a GEMM example.

Table 2: Summerization of passes in ARIES framework.

Opt Level ‘ Objects ‘ Passes ‘ Descriptions

After

ot
Sub_CO

-broadcast-detection | Detect DMA broadcast

Global Dataflow Graph -data-forwarding Enable L1 data forwarding

-dma-to-io Convert memory dma by IOs and connects
Create the ADF graph connections
Materialize IO to GMIO or PLIO

Specify the AIE IO width

Place 3D logic array on 2D physical layout
Place IOs on the AIE IO tiles

Vectorize specific loops by factors

-adf-cell-create
-io-materialize!
-io-packing!
-core-placement!
-io-placement!
Local -aie-vectorize

AIE Array

AlE Core -kernel-interface Enable automatic lock control for cores
-axi-packing Increase the AXI width for higher DDR BW
PL -burst-detection Increase DDR burst by merging interleaved access

-pl-double-buffer
-pipeline-ii®

Create double buffers for the functions in PL
Specify the pipeline II of functions in PL

Note: ! with parameter from primitive .to(); 2 with parameter from primitive .vectorize();
3 with parameter from primitive .pipeline().

transferring data from off-chip memory (%A, %B, %C) to the on-chip
buffer and sending it to the streams (%s_xxx) that are finally con-
nected to the AIE array for computation. The sub-functions are
defined in the top function of PL adopting a full task-level pipeline
in HLS design under dataflow pragma (9@). For illustration pur-
poses, we provide the function definition of LoadA, where the
data is read from the off-chip memory %A to the register %1 using
affine. load operation (9@) and is interleaved written to the cor-
responding internal stream by affine.store(9(0) respectively.

5.3 ARIES Optimizations and Automation

ARIES introduces a set of automated optimization and transfor-
mation passes that lower the initial IR to the final IR. These opti-
mizations are categorized into global, which operate at the graph
level, and local, which target code sections mapped to the specific
hardware hierarchy, as summarized in Table 2.

Global Optimizations. When conducting global optimizations,
ARIES decouples the high-level dataflow graph optimizations from

B2|B3 Sub c

n
C1

(a) GEMM b) Dataflow graph before and after optimizations

func.func @top_gemm(%A, %B, %C){ : func.func @top_gemm(%A, %B, %C){
@Dadf.dma(%A[0,0][TI,TK][1,1], %PE6_A) ®aaf.ama(%A[e,e][TI,TK][1,1],

adf.dma(%B[0,0][TK,TI][1,1], %PE@_B) ' %PE@_A, %PE2_A) //Broadcast

%Sub_Co=Func.call @PEO(%PEG_A, %PE@_B)| adf.dma(%B[0,0][TK,TI][1,1], %PEG_B)
@adf.dma(%Sub_C0, %C[0,0][TI,TI][1,1]) | %sub_Ce=func.call @PEG(%PE@_A, %PE@_B)

adf.dna(%A[0, TK][TI,TK][1,1], %PEL_A) | adf.dma(%A[@,TK][TI,TK][1,1], %PE1_A)

adf.dma(%B[TK,0][TK,TI][1,1], %PE1_B) ! adf.dma(%B[TK,0][TK,TI][1,1], %PE1_B)
@adf.dna(%C[0,0][TI,TI][1,1], %PE1_Cin),@adf.dma(%Sub_Co, %PE1_Cin)//Forwarding

%Sub_C1=func.call @PE1(%PE1_A, %PE1_B, ' %PE1_C=func.call @PE1(%PE1_A, %PE1_B,

%PE1_Cin) , %PE1_Cin)

adf.dma(Sub_C1, %C[0,0][TI,TI][1,1]) ! adf.dma(%PE1_C, %C[0,0][TI,TI][1,1])

@adf.dma(%A[0, 0][TI TK][1,1], %PE2_A) : // PE2 & PE3 ...}
... PE3 .
/" (c) Date movement IR before and after optimizations

Figure 10: ARIES global optimizations.

1
i
1
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the hardware specifications. It allows for flexible and scalable opti-
mizations that can be refined for specific hardware components or
architectures in a later stage. We use another GEMM as an example
shown in Figure 10(a) to demonstrate the global passes including
broadcast-detection and data-forwarding. As introduced
in Section 5.1, ARIES IR builder will extract the data movement
where the conceptual graph and its IR are shown in the Before
side of Figure 10(b) and (c). The tiles corresponding to each PE,
e.g., A0, are sent to the local buffer of the PE (%PE®_A) through the
adf.dma operation. Before conducting the global passes, the same
tile will be loaded from the external memory to the local memory
repetitively as marked by 10(D. Besides, the intermediate result
from PE® and PE2 will be stored to the external memory and loaded
back as marked by 10(2). The conceptual graph and the IR after
optimization are also demonstrated in Figure 10. To avoid loading
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func. func @top_gemm(%A, %B, %C){
adf.connect (%plioA®, %s_A@) {top_config}
adf.connect (%plioBe, %s_B@) {top_config}
adf. connect (%plioCe, %s_C@) {top_config}
// ... More connections
func.call @adf_celle(%plioAe, %plioBe, %plioCe,

func.func @top_gemm(%A, %B, %C){
adf.io.push(%A[6,0][TI,TK][1,1], %portAe) @

@ )
adf.io.push(%B[0,0][TK,T3][1,1], %portBe
func.call @adf cell6(%portAd, %portso, func.call @fun(J)l(iA, %B, %C, %s_A@, %s_Bo,
%portCo,...) s O ...)}
adf. i0.pop(%portc, %C[0,0][T1,131(1,1]) | D [Func.func @Func_pl(%A, %B, %C, %s_A®, %s_Be,
// PE2 & PE3 ...} %s_C0,...){

(@adf.io.push(%A[0,0][TI,TK/IOPACK][1,1], %s_AQ)
adf.io.push(%B[0,0][TK,TI/IOPACK][1,1], %s_B@)
// ... More push & pop ops
adf.i0.pop(%s_C0, %C[0,0][TI,TI/IOPACK][1,1])}

func.func @adf_cello(%portAe, %portBe, func.func @adf_cello(%plioA@,%plioB@,%plioCe,...){
%portce, ...){ [@adf.config.io(%plioAd, 128){"col,chl"=[30, 4]}
adf.connect(%portA@, %PEQ_A) // ... More 10 configs @
(Dadf.connect(%portAe, %PE2_A) //Broadcast adf.connect(%plioA@, %PEQ_A)
adf . connect (%portBe, %PEQ_B) adf.connect (%plioA®, %PE2_A) // Broadcast
// ... More connections between adf.connect(%plioB@, %PEQ_B)
// Ports and L1 Mems —| // ... More connections between PLIO and L1 Mems
%PE@_C=func.call @PEO(%PEQ_A, %PEO_B) %PE@_C=func.call @PEQ(%PE@_A, %PE@_B){[25, 0]}
adf.connect(%PE@_C, %PE1_Cin)//Forwarding| adf.connect (%PE@_C, %PE1_Cin)// Data forwarding
%PE1_C=func.call @PE1(%PE1_A, %PE1_B, %PE1_C=func.call @PE1(%PE1_A, %PE1_B,
%PE1_Cin) %PE1_Cin){[26, 0]} ®
adf.connect(%PE1_C, %portCo) adf.connect (%PE1_C, %plioCo)
// PE2 8& PE3 ...} // PE2 && PE3 ...}

(a) IR Before |10 Materialize

(b) IR After IO Materialize and Placement

Figure 11: ARIES local optimizations.

the same tile of data multiple times, the broadcast-detection
pass will walk through all the adf.dma operations to gather the
destination memories of the ones with the same source memories.
The data-forwarding pass will optimize the data movement by
eliminating the consecutive store and load pairs that access the
same tile of external memory.

Local Optimizations. After the global optimizations, the passes
for local optimizations will be called following the order listed in Ta-
ble 2. The adf.dma operations will be converted to adf.io.push
or adf.jo.pop operations to involve the IO information using the
dma-to-1o pass. Instead of moving data between two memories,
the data will be pushed or popped from one memory to an IO port
and then the IO port will be connected to the other memory as
marked by 11(D). The adf-cell-create pass then extracts the
construction of the AIE array into the function adf_cel10 shown
in Figure 11(a). According to the user-specified IO type from . to ()
primitive in the programming interface, the IO port will be materi-
alized to GMIO or PLIO by jo-materialize pass where GMIO
and PLIO refer to the IOs connecting the AIE array with external
memory and PL respectively. For designs with PLIO, a function
representing the logic in the PL side will be created through this
pass(11@). In order to balance the IO bandwidth to the AIE array,
the fo-packing pass will configure the materialized IO to the
specified port width, frequency, and burst length(11®)). The size
and data type of the memory in adf.io.push and adf.io.pop
operations will also be adjusted (11()).

ARIES provides the default AIE core placement algorithms and
the IO placement algorithm to help alleviate routing congestion
when scaling to hundreds of AIEs. The AIE core placement al-
gorithm aims to map the 3D logic AIE array to the 2D physical
AIE array. To leverage the shared memory and cascade IO connec-
tions of the AIEs in the reduction dimension (dim), the cores are
required to be placed in adjacent locations. ARIES designs three
placers to allocate the AIEs in reduction dims horizontally-adjacent,
vertically-adjection, and zigzag-adjacent. We demonstrate the hori-
zontal placer in Algorithm 1. For each core, it takes as inputs the
3D AIEID (i, j, k), the total number of AIEs in each dim (PI,
PJ, PK), the column and row offset (colOff, rowOff), and the
available AIEs in the physical 2D array (colNum, rowNum). Based

Algorithm 1 AIE Core Placement Algorithm

Input: i, j, k, PI, PJ, PK, colOff, rolOff, colNum, rowNum
Output: col_pos, row_pos

1: function HORIZONTAL_PLACER(}, j, k, PL, PJ, PK, colNum, rowNum)
2: curRowNum = rowNum - rolOff
3 if PJ] >= PI then
4 height = min(PJ, curRowNum)
5 serialized_ij_id =j +1i* PJ
6: else
7 height = min(PI, carRowNum)
8: serialized_ij_id =i+ j* PJ
9: colReq = ceil( PI * PJ * PK / height)
10: if colReq > colNum then
11: return false;
12: remi = serialized_ij_id % height
13: quot = serialized_ij_id // height
14: pid = remi + PK * height + quot * PK * height
15: return pid, height
16: function MAIN_PLACER(], j, k, PI, PJ, PK, colOff, rolOff, colNum, rowNum)
17: pid, height = HORIZENTAL PLACER(, j, k, PL PJ, PK, colNum, rowNum)
18: col_pos = colOff + pid // height
19: row_pos = rowOff + pid % height

on the placement ID (pid) and height generated by different plac-
ers, the column and row position (col_pos, row_pos) of an AIE
core can be calculated by Lines 18-19. Without loss of generality,
we assume k is the reduction dim in the algorithm. For the hori-
zontal placer, the AIEs cores with the same ID in dim i and j, and
consecutive ID in dim k will be placed in the same row but in dif-
ferent columns. Then by judging the total number of AIEs in dim 1

and j, it calculates the serialized i and j IDs (serialized_ij_1id)
which determines the AIE cores to be placed in adjacent rows (Lines
3-8). The height of the physical 2D AIE array is chosen from the
minimum value of PI/PJ and the number of physical rows in the
AIE array. In Lines 12-14, the pid can be generated based on the
serialized_ij_id and height. ARIES offers the user the exten-
sibility of defining customized placement algorithms using . to ()

primitives introduced in Section 4.3. Based on the core placement
algorithm, ARIES applies a routing-aware IO placement algorithm
proposed in [32] for both PLIO and GMIO where it places the IOs in
the available channel of the interface tile that leads to the least west
and east routing congestion. By running the core-placement
and io-placement passes, the position of each IO and core will
be attached as marked by 11(® and 11(5). For AIE core optimiza-
tions, based on the user-specified configurations, ARIES applies the

vectorization over loops using the affine passes including affine-
unrolland affine-super-vectorize. Then aie-vectorize

pass in MLIR-AIE [11] is utilized to generate the AIE vector IR in
aijevec dialect. To make the current flow compatible for both Vitis

ADF and pure AIE compilers, kernel-interface pass is used to

modify the type of AIE kernel interfaces.

On the PL side, the adf.i0.push and adf.io0.pop marked
by 113 will further be lowered to the builtin memref, scf, and
affine dialects before code generation. ARIES implements passes
to make full use of the off-chip bandwidth by automatically pack-
ing AXI4 port width (axi-packing) and detecting opportuni-
ties to increase the burst length(burst-detection). The double
buffer technique is utilized by the pass pl-double-buffer to
overlap the time spent on off-chip access with the on-chip process-
ing time. ARIES allows users to customize their designs with the
pipeline_ii configuration, defaulting to 1 if not specified.



ARIES: An Agile MLIR-Based Compilation Flow for Reconfigurable Devices with Al Engines

Overall Optimization Insights. Adopting the MLIR ecosystem,
ARIES optimizes designs globally and locally, ensuring extensibil-
ity and reusability for future AIE architectures. For global opti-
mizations, it abstracts dataflow without hardware specifics (e.g.,
PLIO, GMIO, Mem-tile), allowing for the analysis of general data
movement optimizations, such as broadcast and packet-switch pat-
terns, as well as top-down customization of dataflows like output-
stationary dataflow and systolic-array architectures. Unlike bottom-
up approaches, which require significant modifications across com-
ponents when optimizing one (e.g., AIE array, core, or Mem-tile),
this top-down method minimizes the changes in the other compo-
nents. For local optimizations, all components remain a unified IR,
ensuring that local optimizations are aware of the other compo-
nents. For example, adjusting the IO port width in the AIE array will
automatically trigger updates to memory data types for the buffer
shown in 11(3). ARIES offers a unified, open-source framework that
provides optimized solutions for different AIE-related backends,
while also enabling users to explore customized optimizations.

6 Evaluation

This section presents on-board evaluation results of ARIES using
realistic benchmarks. For Versal ACAP AIE architectures, we use
the VCK190 evaluation board, featuring 8x50 AIE cores, 90K LUTs,
1968 DSP58s, 967 BRAMs, 463 URAMSs, and one 25.6GB/s DDR4-
DIMM. For all the experiments on Versal, ARIES uses AMD Vitis
version 2023.1 as our backend compiler. To measure power con-
sumption, each benchmark is executed for over 60 seconds, and
the average power is reported using the AMD board evaluation
and management tool [33]. For Ryzen-AI NPU architectures, the
tests are conducted on an AMD Ryzen™ 9 7940HS CPU, which
includes an integrated NPU with 4x5 AIE-ML cores. We use AMD
Vitis 2023.2 and MLIR-AIE [11] for NPU compilation.

6.1 Single-Kernel Benchmarks

We first evaluate widely adopted tensor algebra benchmarks used
in [6, 15, 7, 34, 35, 36]. The algorithms of the benchmarks including
GEMM, TTM, TTMc, and MTTKRP are defined by equation (1)-(4).
GEMM : C(i, j)+ = A(i, k) x B(k, j) (1)
TTM : C(i, j, k)+ = A(i, j, 1) x B(l, k) 2)
TTMec : D(i, j, k)+ = A(i, I, m) x B(L, j) X C(m, k) 3)
MTTKRP : D(i, j)+ = A(i, k,I) X B(k, j) x C(1, j) 4)
GEMM Benchmarks under Various Data Types. For the GEMM
benchmark, we compare the on-board throughput and energy ef-
ficiency on Versal VCK190 with the SOTA solutions [15, 7] under
FP32,INT16, and INT8 data types in Table 3. The I * ] * K represents
the AIE array parallelism factors on the three dimensions of GEMM.
For the intra-AIE design, all the GEMM benchmarks apply the
well-optimized kernel proposed by CHARM?23 [6]. CHARM24 [7]
and AutoMM [15] extensively explore the PLIO reuse by apply-
ing combined broadcast and packet-switch connections. Although
it requires less number of PLIOs, their data reuse pattern relies
greatly on the computation-to-communication ratio of the single
core. ARIES explores broadcast opportunities, proposes different
core placement algorithms, and applies a routing-aware IO place-
ment algorithm, thus achieving 1.2x and 1.7X higher AIE utilization
under INT16 and INTS data types without performance degradation.
CHARM24 [7] and AutoMM [15] improve the AIE array efficiency
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by adopting fine-grained cascade connection between AIEs and
the bubble-free data movement between PL and AIEs. However,
due to the double buffer synchronization HLS style on the PL side,
the communication efficiency for the AIE array is around 80%. In
contrast, ARIES adopts a full task-level pipeline HLS style which
achieves around 95% AIE array efficiency. The analysis can also
be verified through our experiments. With FP32 data, ARIES uses
352 AIEs - 8% fewer than two baseline designs — while achieving
1.31x and 1.18X higher throughput compared to CHARM24 [7] and
AutoMM [15]. As these three designs share the same intra-AIE opti-
mization, ARIES achieves the gain on throughput from the efficient
data movement between PL and AIE array. For INT16 and INT8
data types with higher AIE utilization and AIE array efficiency,
ARIES achieves up to 2.11X and 1.63% throughput gain compared
to AutoMM [15]. The higher throughput also leads to higher power
consumption in ARIES designs. However, ARIES still achieves up
to 1.20%, 1.57%, and 1.35X better energy efficiency compared to
AutoMM [15] for FP32, INT16 and INT8 data types.

TTM, TTMc, and MTTKRP Benchmarks. For TTM, TTMc, and
MTTKRP benchmarks, we conduct experiments on VCK190 un-
der INT32 data type. The tiling factors, resource utilization, and
throughput are summarized in Table 4. We tile each loop 4 times
where the loop index from 0-3 represents the memory hierarchy
from external to internal. More specifically, indices i3-m3 represent
the data stored in AIE local memory. Indices i2-m2 are the spatial
loops unrolled on the AIE array. Indices i1-m1 are the array parti-
tioning loops that determine the data reuse on the SRAM of the PL
side. Indices i0-m0 represent the off-chip to on-chip data movement.
Based on our core and IO placement algorithms, we utilize 352, 192,
and 192 AIEs for TTM, TTMc, and MTTKRP benchmarks. ARIES
achieves 4.9, 4.8, and 4.8 TOPS under INT32 data type with 87%,
80.6%, 80.6% overall AIE efficiency. Note that the throughput for
TTMc and MTTKRP is an effective throughput where we explore
algorithm optimization to reduce the multiply operations.
Benefits of ARIES Compilation Framework. To demonstrate
the advantages of ARIES in enhancing productivity and improving
the success rate of AlE-related designs, we present an evaluation
in Table 5. It compares lines of code (LoC), ARIES compilation
time, AIE placement and routing (PnR) time, and PnR results across
GEMM benchmarks with AIEs ranging from tens to hundreds. Ver-
sal VCK190 and AMD Vitis were selected as the backend device
and tool to illustrate the benefits of ARIES. The compilation is run-
ning on a virtual machine of an Intel Xeon Gold 6346 CPU with 32
threads and 128GB memory enabled. Using ARIES Python-based
programming model, only 25 LoC is required from the user for all
design cases with small modifications to the number of grids. We
also report the ARIES compilation time, Vitis AIE PnR time, and
the corresponding PnR result when the AIE core and IO placement
optimizations proposed by ARIES are enabled and disabled. The
ARIES compilation time is from the initial IR to the final code after
the generator. The Vitis AIE PnR time is from the vendor tool report
for compiling the generated design. By applying our AIE core and
IO placement optimizations, ARIES reduces the average PnR time
from 2300s to 64.9s with 0.3s of additional compilation time. For
designs with over 128 AIEs, ARIES core and IO placement algorithm
enables successful placement and routing, whereas no solution can
be found without ARIES optimizations.
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Table 3: On-board throughput and power comparisons of GEMM benchmark under FP32, INT16, INT8 data types.

DType Works Para (I'J*K) LUT BRAM URAM DSP PLIOs AIE TOPS Power(W) | GOPS/W
ARIES (Ours) 11x8x4 191,324(21.26%) | 855 (88.42%) | 352 (76.03%) | 374 (19.00%) | 76 + 88 | 352 (88%) | 4.92 (1.31x) 63.8 77.1 (1.20x)
FP32 | CHARM [7] 12x8x4 103,959(11.55%) | 764 (79.01%) | 384 (82.94%) | 165(8.38%) | 72 +24 | 384(96%) | 4.18 (1.11x) 61.9 67.5 (1.05%)
AutoMM [15] 12x8x4 64,849(7.20%) | 661 (68.36%) | 384 (82.94%) | 163(8.28%) | 72 +24 | 384(96%) | 3.75 (1.00x) 58.3 64.3 (1.00x)
ARIES (Ours) 11x8x4 184,373(20.49%) | 631 (65.25%) | 352 (76.03%) | 46 (2.34%) | 76 + 88 | 352 (88%) | 15.86 (2.11x) 76.3 207.9 (1.57x)
INT16 | CHARM [7] 12x3x8 111,626(12.41%) | 885(91.52%) | 384 (82.94%) | 91(4.62%) | 72+48 | 288 (72%) | 10.03 (1.34x) 64.8 154.8 (1.17x)
AutoMM [15] 12x3x8 92663(10.30%) | 477 (49.33%) | 384 (82.94%) | 93 (4.73%) | 72+48 | 288(72%) | 7.51(1.00x) 56.8 132.2 (1.00x)
ARIES (Ours) 10x8x4 144,825(16.09%) | 823 (85.11%) | 320 (69.11%) | 0(0.00%) | 72+ 80 | 320 (80%) | 45.94 (1.63x) 73.8 622.5 (1.35x)
INT8 | CHARM [7] 8x6x4 115,628(12.85%) | 662 (68.46%) | 388 (83.80%) | 71(3.61%) | 80 +24 | 192(48%) | 31.31(1.11x) 62.7 499.4 (1.08x)
AutoMM [15] 8x6x4 85,073(9.45%) | 669 (69.18%) | 384 (82.94%) | 71(3.61%) | 80 +24 | 192 (48%) | 28.15 (1.00x) 61.0 461.5 (1.00x)

Table 4: Tiling factors, resource utilization and throughput
of TTM, TTMc and MTTKRP under INT32 data type.

TIM TTMc MTTKRP
10,j0,k0,10,m0 2,2,2,64,- 2,2,2.8,8 2,2,8.8.-
i1,j1,k1,11,m1 1,4,6,1,- 1,2,2,8,8 2,8,6,4,-
i2,j2.k2,12,m2 1,11,8,4,- 1,8,12,1,2 8,12,1,2,
13,j3,k3,13,m3 1,32,32,32,- 2,16,16,16,32 2,32,16,32,-

LUT 198510(22.06%) 142266(15.81%) 192936(21.44%)
BRAM 855(88.42%)  286.5(29.63%)  942.5(97.47%)
URAM 352(76.03%) 128(27.65%) 443(96.76%)

DSP 20(1.02%) 0(0.00%) 0(0.00%)
PLIOs 76+88 34+96 52+96

AlEs 352(88%) 192(43%) 192(48%)
TOPS 4.9 4.8 4.8

AIE Efficiency 87% 80.6% 80.6%

Table 5: Lines of code (LoC), ARIES and AIE PnR compilation
time comparison across different AIE scales for GEMM — CIP
refers to AIE core and IO placement optimizations in ARIES.
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6.2 Multi-Layer Applications

Residual Neural Network Layer. We implement a residual neural
network layer from ResNet [37] in ARIES. Our evaluation focuses
on the performance of different design configurations by toggling
scheduling primitives in ARIES when mapping the target applica-
tion to the NPU device. The ResNet layer processes an input image
of size 64x64 with 256 channels in the INTS8 data type. It comprises
three tasks: (1) a Conv1x1 task with 256 input channels (IC) and
64 output channels (OC), (2) a Conv3x3 task with 64 IC and 64
OC, and (3) another Conv1x1 task with 64 IC and 256 OC, fused
with an element-wise addition operator for the skip connection. We
conducted an ablation study using various scheduling primitives in
ARIES and compared the results to the optimized INT8 NPU design
from Ryzen-AI-SW [20]. The results are presented in Table 6.

In design D1 of ARIES, these tasks are mapped to three adjacent
AIE cores respectively to take advantage of task-level parallelism.

Table 6: ResNet layer evaluation on Ryzen-AI NPU — SL stands
for SIMD lane; IP indicates if instruction pipeline is enabled. Util
means the utilization of all AIE cores on the Ryzen-AI NPU device.
RT refers to run time excluding host-side memory copy overhead.

Designs Tile SL IP Util(%) RT(ms) Speedup
D1 scalar [16,16] 1 No 15 57.40 1.24
D2 +vectorized [16,16] 4 No 15 16.63 4.29
D3 +vectorized [16,16] 8 No 15 9.82 7.27
D4 +conv3x3-2core  [16,16] 8 No 20 9.18 7.77
D5 +inst-pipeline [16,16] 8 Yes 20 8.44 8.45
D6 +opt-tile-size [32,16] 8 Yes 20 5.72 13.70
D7 +opt-tile-size [32,32] 8 Yes 20 5.21 12.48
D8 +opt-tile-size [32,64] 8 Yes 20 4.99 14.30
D9 +more-cores [32,64] 8 Yes 40 3.16 22.58
Riallto / RAI-SW[20] - - - 20 71.36 1x

The intermediate results are directly transferred between AIE cores
using DMA access to the neighboring core’s L1 memory. Although
D1 is under-optimized, it outperforms Ryzen-AI's overlay-based
approach because it caches intermediate results in the on-chip
L1 cache. In contrast, the Ryzen-Al overlay utilizes more cores to
accelerate a single task, writes results to slow L3 memory, and then
processes the next task. In D2 and D3, vectorization is applied to OC
dimension to allow SIMD processing. In D4, the second Conv3x3
task is tiled in OC dimension and mapped to 2 AIE cores to exploit
tile-level parallelism. In D6-8, we adjusted the tile sizes for the
image’s height and width dimensions. In D9, we increased tile-level
parallelism across height and width by mapping more tiles to AIE
cores, achieving a 22.58x speedup over the Ryzen-AI-SW overlay.

7 Conclusion

We present ARIES, an MLIR-based compilation flow for AIE-based
reconfigurable devices. ARIES provides a programming model to
exploit multi-level parallelism with higher productivity and a uni-
fied IR for automated holistic optimizations. Currently, ARIES pro-
vides an open-source infrastructure for end-to-end applications on
AlE-related architectures with high performance and productivity.
It also provides the opportunity for the entire community to ex-
plore more advanced DSE solutions to improve the parallelism and
data movement of multi-layer applications. In addition, we plan
to integrate existing PL optimizations proposed by MLIR-based
frameworks including ScaleHLS [38], HIDA [39], HeteroCL [40],
HeteroFlow [41] and also come up with new methodologies.
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