
ARIES: An Agile MLIR-Based Compilation Flow for
Reconfigurable Devices with AI Engines

Jinming Zhuang
∗

Brown University

Providence, USA

jinming_zhuang@brown.edu

Shaojie Xiang
∗

Cornell University

Ithaca, USA

sx233@cornell.edu

Hongzheng Chen

Cornell University

Ithaca, USA

hzchen@cs.cornell.edu

Niansong Zhang

Cornell University

Ithaca, USA

nz264@cornell.edu

Zhuoping Yang

Brown University

Providence, USA

zhuoping_yang@brown.edu

Tony Mao

Cornell University

Ithaca, USA

twm59@cornell.edu

Zhiru Zhang

Cornell University

Ithaca, USA

zhiruz@cornell.edu

Peipei Zhou

Brown University

Providence, USA

peipei_zhou@brown.edu

Abstract
As AI continues to grow, modern applications are becoming more

data- and compute-intensive, driving the development of special-

ized AI chips to meet these demands. One example is AMD’s AI

Engine (AIE), a dedicated hardware system that includes a 2D array

of high-frequency very-long instruction words (VLIW) vector pro-

cessors to provide high computational throughput and reconfigura-

bility. However, AIE’s specialized architecture presents tremendous

challenges in programming and compiler optimization. Existing

AIE programming frameworks lack a clean abstraction to represent

multi-level parallelism in AIE; programmers have to figure out the

parallelism within a kernel, manually do the partition, and assign

sub-tasks to different AIE cores to exploit parallelism. These signif-

icantly lower the programming productivity. Furthermore, some

AIE architectures include FPGAs to provide extra flexibility, but

there is no unified intermediate representation (IR) that captures

these architectural differences. As a result, existing compilers can

only optimize the AIE portions of the code, overlooking potential

FPGA bottlenecks and leading to suboptimal performance.

To address these limitations, we introduce ARIES, an agile multi-

level intermediate representation (MLIR) based compilation flow

for reconfigurable devices with AIEs. ARIES introduces a novel pro-

gramming model that allows users to map kernels to separate AIE

cores, exploiting task- and tile-level parallelism without restructur-

ing code. It also includes a declarative scheduling interface to ex-

plore instruction-level parallelism within each core. At the IR level,

we propose a unified MLIR-based representation for AIE architec-

tures, both with or without FPGA, facilitating holistic optimization

and better portability across AIE device families. For the General

Matrix Multiply (GEMM) benchmark, ARIES achieves 4.92 TFLOPS,

15.86 TOPS, and 45.94 TOPS throughput under FP32, INT16, and,

INT8 data types on Versal VCK190 respectively. Compared with the

state-of-the-art (SOTA) work CHARM for AIE, ARIES improves the

throughput by 1.17x, 1.59x, and 1.47x correspondingly. For ResNet

∗
Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution

International 4.0 License.

FPGA ’25, February 27-March 1, 2025, Monterey, CA, USA
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1396-5/25/02

https://doi.org/10.1145/3706628.3708870

residual layer, ARIES achieves up to 22.58x speedup compared with

optimized SOTA work Riallto on Ryzen-AI NPU. ARIES is open-

sourced on GitHub: https://github.com/arc-research-lab/Aries.

CCS Concepts
• Hardware→ High-level and register-transfer level synthe-
sis; • Software and its engineering→ Compilers.

Keywords
Compiler, MLIR, AIE Architecture, Hardware Accelerator

ACM Reference Format:
Jinming Zhuang, Shaojie Xiang, Hongzheng Chen, Niansong Zhang, Zhuop-

ing Yang, Tony Mao, Zhiru Zhang, and Peipei Zhou. 2025. ARIES: An Agile

MLIR-Based Compilation Flow for Reconfigurable Devices with AI Engines.

In Proceedings of the 2025 ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays (FPGA ’25), February 27-March 1, 2025, Monterey, CA,
USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3706628.

3708870

1 Introduction
The rapid growth of compute- and data-intensive applications, such

as artificial intelligence (AI) and wireless communications, has

pushed the limits of traditional computer architectures. To address

the increasing demand for computational resources, specialized

chips have been developed [1, 2, 3, 4]. Among these, the AMD

AI-Engine (AIE) [2] stands out as a promising solution. As shown

in Figure 1, AMD AIE architecture consists of a 2D array of high-

frequency VLIW processors ranging from 20 to 400 for different AIE

device families. The AIE cores can communicate with each other

by direct memory access (DMA) through AXI stream networks

and switches. The AIE architecture adopts a multi-level scratch

pad memory-based hierarchy. While L1 memory refers to the local

memory within each AIE core, L2 memory represents the on-chip

buffers on the PL or the memory tiles shared by all of the AIE cores.

A large amount of data can be stored in the off-chip L3 memory.

AIE architecture offers a wealth of hardware resources, allowing

programmers to exploit parallelism at various levels within their

applications. However, efficiently mapping applications to AIE hard-

ware remains challenging. Figure 1 demonstrates an example of

mapping a Multi-Layer Perceptron (MLP) with two matrix multi-

plication tasks to it. To achieve higher parallelism, programmers

usually exploit (1) task-level parallelism, which maps each task

within the application to specific AIE core groups, and (2) tile-level

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3706628.3708870
https://github.com/arc-research-lab/Aries
https://doi.org/10.1145/3706628.3708870
https://doi.org/10.1145/3706628.3708870

FPGA ’25, February 27-March 1, 2025, Monterey, CA, USA Jinming Zhuang et al.

parallelism, which partitions loop nests of a task into smaller tiles

and executes these tiles in parallel across multiple AIE cores. There

are also finer-grained parallelisms to be exploited inside the AIE

core, including (3) loop-level parallelism which pipelines instruc-

tions inside a loop, (4) data-level parallelism which processes mul-

tiple data elements using Single Instruction Multiple Data (SIMD)

vector engines, and (5) instruction-level parallelism which executes

multiple instructions at a time through VLIW instruction bundling.

Task A

Task B

Task-Level Parallelism

for i in range(...)
 for j in range(...)
 A[i,j]+=M[i,:]@N[:,j]

A00 A01 B10

B10

C00

A B C

@ =

Tile-Level Parallelism

Core 00

L1 Mem

S

Core 01

L1 Mem

S

Core 10

L1 Mem

S

Core 11

L1 Mem

S

L2 Memory (FPGA, Memory Cores)

L3 Memory (DRAM)

Switch

for i in range(...)
 for j in range(...)
 C[i,j]+=A[i,:]@B[:,j]

Figure 1: Mapping multi-task program to AIE cores: Memory

cores are on-device memory featured in AMD AIE-ML [5].

The AIE’s specialized architecture provides great opportunities

for multi-level parallelism in compute-intensive tasks, but poses

challenges in programming and optimization. Many recent efforts

have focused on developing programming abstractions and opti-

mization tools for AIE, aiming to enable programmers to efficiently

exploit parallelism mapping. However, these proposed solutions

face several limitations, hindering their widespread adoption and

efficacy in fully leveraging the potential of the AIE architecture.

Challenge 1: Limited Support for Multi-Layer Applications.
Recent studies on AIE architectures [6, 7, 8, 9] have focused on

accelerating specific kernel, such as matrix multiplication or stencil

computations. However, extending these designs to support more

complex multi-layer applications often presents significant chal-

lenges even when leveraging the provided overlays. This includes

tasks such as workload partitioning on heterogeneous components

and inter-layer communication control, which limits the productiv-

ity of AIE architectures for multi-layer applications.

Challenge 2: Fragmented Abstraction for Multi-Level Paral-
lelism. Some recent studies propose general programming models

for AIE, such as Riallto [10] andMLIR-AIE [11]. These works mostly

adopt the dataflow model as an abstraction for AIE architectures.

Figure 2 shows an example in Riallto, where each kernel needs to be

assigned to a specific AIE core in the 2D array (Lines 3-4). Dataflow

model clearly captures task-level parallelism. However, it falls short

of describing tile-level parallelism inside a task. To map a task to

multiple AIE cores, programmers have to manually break down

the loop tiles inside a task into separate kernels and place them to

particular AIE cores; this also involves manually coordinating data

transfer between loop tiles to reduce communication overheads.

To exploit intra-core parallelism, users need to insert directives

into C++ code linked to each kernel (Lines 3-4) to enable loop

1 class MultiLayerPercepton: # Layer = 2
2 def __init__(self):
3 self.task1 = Kernel("gemm.cpp", tloc=(0,0))
4 self.task2 = Kernel("gemm.cpp", tloc=(0,1))
5 def callgraph(self, x_in, weight1, weight2):
6 out0 = self.task1(x_in, weight1)
7 return self.task2(out0, weight2)

Figure 2: Two-layer MLP in Riallto: The tloc option specifies

the location of AIE core for the kernel to be executed on.

pipeline and use intrinsic C++ vector library APIs to leverage SIMD

vectorization. This approach not only fragments the programming

abstraction between different design levels but also complicates the

exploitation of multi-level parallelism in AIE for programmers.

Challenge 3: Limited Support for Automation and Optimiza-
tion. The existing compilation flows including Riallto and MLIR-

AIE provide a Python-based exploration framework to utilize the

feature of AIEs. However, they rely on users to provide optimized

dataflow, inter-tile data movement scheme, and vectorization to

achieve good performance. MLIR-AIR [12] is an automatic compila-

tion framework for AIE architectures. However, it does not explore

the customized dataflow, data types, and buffer reuse opportuni-

ties well on the FPGA side. The AMD Vitis flow uses ADF graphs

to program AIE and HLS/RTL for Programmable Logic (PL). An

additional configuration file is required to establish connections be-

tween PL and AIE, resulting in a fragmented programming process

and difficulties in achieving holistic optimization.

Challenge 4: Portability. Various of AIE architectures exist. For

example, the Ryzen-AI Neural Processing Unit (NPU) [13] is de-

signed for consumer devices, featuring fewer AIE-ML cores along

with specialized mem-tiles as L2 memory. In contrast, Versal ACAP
[14] is geared towards high-performance computing and data cen-

ters, offering more AIE cores for greater computational power,

along with an integrated FPGA for enhanced memory buffering

and flexibility. Most existing works focus on either NPU or Versal,

and the lack of portability between these architectures makes it

labor-intensive to port designs from one platform to another.

To address these limitations, we introduce ARIES, an agile compi-

lation flow for AIE-based reconfigurable devices. ARIES provides a

novel programming model that allows programmers to define tasks

at the level of tiles, with each tile handling a portion of the origi-

nal problem size. Programmers have user-level control over these

task tiles and can scale them out across more AIE cores without

restructuring code. Additionally, ARIES offers scheduling primi-

tives to optimize the performance of each task tile running on a

single AIE core. At the IR level, ARIES introduces a unified MLIR-

based representation for AIE architectures, both with and without

FPGA, enabling holistic optimization of the target application. This

approach enhances portability and performance across different

AIE device families, including the Versal ACAP and Ryzen-AI NPU

families. To summarize, our major contributions include:

• At the programming model level, ARIES introduces a novel pro-

gramming abstraction that helps users exploit multi-level paral-

lelism in AIE with more productivity; it allows programmers to

define tasks at the granularity of tiles, and map task tiles across

AIE cores to exploit both task- and tile-level parallelism with-

out code restructuring. Additionally, ARIES provides a set of

ARIES: An Agile MLIR-Based Compilation Flow for Reconfigurable Devices with AI Engines FPGA ’25, February 27-March 1, 2025, Monterey, CA, USA

declarative scheduling primitives that allows users to optimize

the performance of the task tile running on a single AIE core.

• Underlying the programming interface, ARIES is the first frame-

work providing a unified MLIR-based representation for AIE core,

AIE graph, and PL by using existing AIEVec, proposed ADF, and

other existing builtin dialects respectively. The unified represen-

tation enables ARIES to perform global and local optimizations.

It also provides the extensibility for customized optimizations

to be easily integrated to achieve near-theoretical performance.

The experiments show that ARIES is capable of achieving up to

87% AIE efficiency even when scaling to hundreds of AIEs.

• ARIES demonstrates portability across different AIE architectures.

With the unified IR, ARIES is able to generate low-level code

for multiple AIE architectures by extending lightweight code

generator backends, enabling the mapping of the same input

source code to both Versal ACAP and Ryzen-NPU.

2 Background and Related Work
Accelerator Designs on AIE. Prior accelerator designs have tar-
geted AIE architectures for specific applications. CHARM23 [6]

and AutoMM [15] provide design space exploration (DSE) guided

mapping solutions for matrix-multiply (MM) related applications

on Versal. CHARM24 [7] further improves the performance by op-

timizing the intra-AIE and AIE array efficiency. MAXEVA [8] also

targets dense MM acceleration on Versal. However, it focuses on the

simulation of the AIE array without considering the communica-

tion optimization between PL to AIE and between off-chip memory

to on-chip buffers thus lacking the real on-board performance anal-

ysis. AIM [16] makes full use of the heterogeneity of Versal ACAP

to speed up the large integer multiplication-based benchmarks.

SSR [17] and EQViT [18] explore the latency and throughput trade-

off for transformer-based models on VCK190. HGC-N [19] design

sparse and dense MM accelerators on Versal VCK5000 to accelerate

the graph neural networks. SPARTA [9] leverages MLIR-AIE [11]

to accelerate stencil computations on VCK190. Nevertheless, these

works focus on specific applications without high extensibility and

portability to other applications and platforms.

Accelerator Programming Models. Many recent works have

been proposed to provide general-purpose programming models

for AIE or AIE-like dataflow accelerators. Riallto [10] introduces

dataflow abstraction for NPU programming. Ryzen-AI-SW [20] al-

lows users to run AI models on NPUs by offering a pre-built AIE

overlay that accelerates common operators. MLIR-AIR [12] and

MLIR-AIE [11] support both ACAP and NPU, but they do not cap-

ture FPGA in ACAP architecture. Alongside AIE-specific program-

ming tools, ML frameworks like Torch/XLA [21] support lowering

Torch models to TPUs [1]. Triton [22] simplifies memory and thread

management on GPUs with a tile-based abstraction and extends

support to other dataflow accelerators [4]. Allo [23] introduces a

programming model that allows users to apply decoupled hardware

customizations [24] without changing the algorithm. These acceler-

ator programming frameworks either fully automate compilation,

hiding hardware details away, or offer user-friendly abstraction to

apply hardware customization with enhanced productivity.

MLIR Compiler Infrastructure. MLIR [25] is a compiler infras-

tructure for representing and optimizing code that works across

different levels of abstraction, from high-level models like linear

Programming Interface
(Section 4)

IR Builder
(Section 5.1)

Global Optimizations
(Section 5.3)

Local Optimizations
(Section 5.3)

Code Gen

Dataflow Graph
Optimizations

Versal NPU

AIEVec Dialect

ADF Dialect

Builtin Dialects

Initial IR

Final IR

Figure 3: ARIES framework overview.

algebra arithmetic to low-level hardware instructions. MLIR allows

developers to create custom “dialects” tailored to specific domains.

A “dialect” defines custom operators and transformations at a spe-

cific abstraction level to optimize code for particular hardware

architectures. In MLIR, different dialects can be used together in the

code representation, enabling collaborative optimizations across

various domains to improve overall performance and flexibility.

3 ARIES Framework Overview
While the AIE architectures provide high throughput and energy

efficiency, its heterogeneity often poses challenges for users when

customizing computation and data communication for general ap-

plications. We propose ARIES framework that makes proper ab-

straction of the parallelism, data movement, and control logic for

the AIE-based systems. As shown in Figure 3, ARIES provides users

with a novel Python-based programming model for defining cus-

tomized applications. Then ARIES reuses the open-source Allo [23]

compilation flow to generate the initial MLIR assembly. The initial

IR will be lowered to the final IR by going through the global and

local optimizations proposed by ARIES.

During the global optimizations, ARIES optimizes the high-level

dataflow graph without hardware specifics. Then with hardware-

related features being specified, ARIES proposes local optimizations

for single AIE, AIE array, and PL respectively. For a single AIE

kernel, ARIES leverages the existing AIEVec dialect [26] and fur-

ther introduces transformations to ease the control logic for local

buffer locks. For the AIE array, we propose an Adaptive Data Flow

(ADF) dialect to describe inter-AIE parallelism and connections.

Furthermore, ARIES uses the built-in dialects, e.g., memref, scf,
and affine, with additional attributes to represent the customized

PL logic. Because both global and local optimizations are under the

unified MLIR representation, ARIES enables hardware-agnostic and

hardware-specific optimizations to be effectively applied, regardless

of the diverse architectures and programming models of various

backend devices. We also implement the code generator within

MLIR infrastructure translating ARIES final IR to AIE architectures.

For Versal, ARIES generates AIE C/C++ intrinsics for AIE cores,

C/C++ Vitis ADF APIs for AIE array, HLS C/C++ for PL, configura-

tion file for system connection, and XRT host code for controlling

the system. For NPU, ARIES generates the same AIE C/C++ in-

trinsics for AIE cores, and MLIR-AIE IR/Python binding APIs to

manage AIE core connection and host-device data movement.

FPGA ’25, February 27-March 1, 2025, Monterey, CA, USA Jinming Zhuang et al.

4 ARIES Programming Model
In this section, we introduce ARIES’s Python-based programming

model to address the limitations of previous methods. We begin

with a motivational example of loop tiling for GEMM kernels, high-

lighting its challenges. We then present ARIES’s programming

model, demonstrating how its tile-based interface enhances devel-

oper productivity and exposes more opportunities for compiler

optimizations, thus providing an efficient framework for exploiting

multi-level parallelism on AIE.

4.1 Motivating Example: MLP with Tiled GEMM
We begin with a single GEMM task in the MLP. A basic GEMM

task, 𝐶𝑖 𝑗 =
∑𝐾
𝑘=1

𝐴𝑖𝑘 · 𝐵𝑘 𝑗 , can be implemented with a three-level

loop nest over indices (i,j,k). However, directly mapping this im-

plementation to AIE hardware results in sub-optimal performance.

Firstly, the loop dimensions I, J, and K are typically larger than the

AIE array’s size, preventing them from being fully unrolled and ex-

ecuted in parallel across AIE cores. In fact, improper unroll factors

lead to suboptimal performance. Furthermore, memory accesses

are inefficient. The inputs and outputs are too large to fit in the

on-chip L1 memory, so they can only be stored in the slower L3
memory; the lack of data locality and on-chip data reuse also leads

to decreased memory access efficiency.

1 T = int(16)
2 def gemm_tiled(A: T[I, K], B: T[K, J], C: T[I, J]):
3 # Schedule execution order of tiles
4 for i0 in range(0, I, TI_0):
5 for j0 in range(0, J, TJ_0):
6 for k0 in range(0, K, TK_0):
7 DMA_LOAD_L3_TO_L2(...) # On-chip data buffer
8 for i1 in range(0, TI_0, TI_1):
9 for j1 in range(0, TJ_0, TJ_1):
10 for k1 in range(0, TK_0, TK_1):
11 DMA_LOAD_L2_TO_L1(...)
12 # Mapped to cores for parallel execuction
13 for i2 in range(0, TI_1, TI_2):
14 for j2 in range(0, TJ_1, TJ_2):
15 for k2 in range(0, TK_1, TK_2):
16 LOAD_L1_TO_VECTOR_REGS(...)
17 for i3 in range(0, TI_2): # SIMD
18 for j3 in range(0, TJ_2):
19 for k3 in range(0, TK_2):
20 MAC(A_vec, B_vec, C_vec)
21 store(C_vec, C_L1, ...)
22 DMA_STORE_L1_TO_L2(...)

Figure 4: GEMM imperative loop tiling in vanilla Python.

To effectively map the GEMM task to AIE, loop tiling is applied.

We show a tiled GEMM example written in vanilla Python in Fig-

ure 4. It breaks down each original loop axes into multiple nested

loops (Lines 4-19) so that these new loop levels can be mapped to

different hierarchies in the hardware. The loop axes (i2,j2,k2)
define the group of inner loop tiles that are distributed across AIE

cores for parallel execution. The innermost loop axes (i3,j3,k3)
are assigned to the vector engine within each AIE core for SIMD

processing. The outer loop axes, (i0,j0,k0) and (i1,j1,k1), are
temporal loops that move through different groups of inner tiles

based on the original problem size. As the temporal loops run, fre-

quently accessed data is cached in L2 and L1 memory for faster

on-chip access (Lines 7 and 11). This approach allows explicit map-

ping from loop axis to the hardware architecture, which enables

more parallel computation. It also breaks down memory access into

smaller chunks, improving on-chip data reuse and data locality.

Loop tiling is crucial for effective mapping to AIE and taking

advantage of multi-level parallelism. However, the imperative loop

tiling approach in Figure 4 creates new challenges. First, it requires

significant effort in code restructuring; users need to create deep

nested loop structures, decide the mapping from loop levels to AIE

cores, and coordinate data movement between memory hierarchies

explicitly. Second, data reuse between loop tiles is implicit; it often

requires additional compiler analysis like polyhedral modeling [27]

to identify reusable data across the tiled loops and avoid repeated

off-chip memory access. This makes it harder to optimize on-chip

data reuse when mapping loop tiles to parallel compute units.

4.2 Tile-Based Task Abstraction
To address these challenges, ARIES introduces a tile-based task

abstraction that simplifies loop tiling by hiding aforementioned

complexities from programmers. Figure 5 shows a code example

of a tiled GEMM task in ARIES. The function computes a small

tile of the overall problem, with tiling applied to the i, j, and k
dimensions. This breaks the original problem size into a 3D grid of

smaller tiles. When all the tiles in the grid are processed, the entire

task is complete.

1 @aries.task_tile
2 def gemm(A: T[I, K], B: T[K, J], C: T[I, J]):
3 i, j, k = aries.tile_ranks() # Tile ranks
4 TI, TJ, TK = aries.tile_sizes() # Tile sizes
5 ti = arange(i*TI, (i+1)*TI) # I tile range
6 tj = arange(j*TJ, (j+1)*TJ) # J tile range
7 tk = arange(k*TK, (k+1)*TK) # K tile range
8 A_L1: T[TI, TK] = A[ti, tk] # Load to L1 in core
9 B_L1: T[TK, TJ] = B[tk, tj] # Load to L1 in core
10 C_L1: T[TI, TJ] = C[ti, tj] # Load to L1 in core
11 for i in range(0, TI):
12 for j in range(0, TJ):
13 for k in range(0, TK):
14 C_L1[i, j] += A_L1[i, k] * B_L1[k, j]
15 C[ti, tj] = C_L1 # Store partial sum

Figure 5: GEMM task with tile abstraction in ARIES — tile

ranks (Line 5) refers to the index number of tile in each dimension

Grid Semantics for Tiles. Inside the task tile, programmers can

access tile indices in the grid (Line 3), and define the computation

to be performed by each tile using its ranks and external memory

pointers. The tile size for each dimension (Line 4) can be adjusted

outside the function body based on the requirement. The seman-

tics to index a tile in the grid (Lines 3-4) is borrowed from CUDA

[28] and Triton [22]. Compared with the imperative loop tiling

approach, it makes the code more concise without compromising

expressiveness. A special case is that when a task has only one

tile in its grid. In this situation, the tile size matches the original

problem size of (I,J,K), and no tile-level parallelism is exploited

within the task.

Tile-Based Memory Abstraction. In a task tile, all its memories

are described at the granularity of a tile. The input parameters

representing external memories of a tile outside the AIE core (Line

ARIES: An Agile MLIR-Based Compilation Flow for Reconfigurable Devices with AI Engines FPGA ’25, February 27-March 1, 2025, Monterey, CA, USA

2) is mapped to L2 or L3 memory, and the local memory is mapped

to the L1 memory inside an AIE core (Lines 8-10). This tile-based

abstraction clearly exposes opportunities for data reuse between

task tiles by representing memory access as hyper-rectangles in

the memory space. By analyzing the overlap between the memory

regions of task tiles, the compiler can determine how to reuse

input and output data on-chip. For example, task tiles along the i
dimension in the grid share the same memory tile of B matrix, so

these memory tiles can be cached in L2 memory and broadcast to

the task tiles as needed.

Tile Scheduling for Multi-Level Parallelism. Each task tile is

designed to run on a single AIE core. However, when the number

of task tiles exceeds the available AIE cores, or tiles from different

tasks need to share these cores, a scheduling strategy is required to

distribute them efficiently to exploit task- and tile-level parallelism.

Additionally, within each core, scheduling techniques like pipelin-

ing and SIMD are needed to maximize intra-core parallelism. To

address these requirements, ARIES adopts the concept of decoupled

scheduling from Allo [23] and provides a set of scheduling primi-

tives as shown in Table 1. These allow users to customize how task

tiles are mapped across AIE cores and executed on the AIE cores

without modifying the algorithm defined in the task tile function.

Table 1: Tile scheduling primitives in ARIES – User-level con-

trol over multi-level parallelism both across and within AIE cores.

Primitive Description

.to(tiles, cores) Map tile(s) of a task to designated AIE core(s).

1 Task-level and 2 Tile-level parallelism

.pipeline(axis, factor) Enable instruction pipelining at loop axis.

3 Loop-level parallelism

.vectorize(axis, factor) Apply vectorization over loops with factors.

4 Data-level parallelism

ARIES introduces (1) .to() primitive allows users to map tiles

of different tasks across AIE cores to exploit task- and tile-level

parallelism. If multiple task tiles are mapped to a single AIE core,

hidden temporal loop levels are created to schedule and execute

the tiles sequentially on that core. (2) The .pipeline() primitive

enables loop pipelining on a task tile to exploit loop-level paral-

lelism on a single AIE core. (3) The .vectorize() primitive applies

vectorized processing to certain loop axes of a task tile, leveraging

data-level parallelism in the AIE core. We provide code examples

in next subsection to demonstrate the usage of these primitives.

4.3 Task- and Tile-Level Parallelism
In this section, we demonstrate how the tiles of each task are sched-

uled to AIE cores for parallel execution. We show the code example

of a two-layer MLP in Figure 6. In this example, we use an AMD

Ryzen-AI NPU device with a 4×5 array of AIE cores as the hard-

ware target. The tile size for each task can be customized using the

subscript operator (Lines 3-4). Each task returns a handle, which

is used for scheduling the task on AIE cores. A schedule object is

created to apply the customization for task0 and task1 (Line 7).
Tile-to-Core Mapping. We use the .to() primitive to assign tiles

from two tasks to separate AIE core groups for parallel execution.

ARIES offers two ways to map task tiles to AIE cores: programmers

1 # Configure task's tile sizes and task dependency
2 grid, size = (I/TI, J/TJ, K/TK), (TI, TJ, TK)
3 task0 = gemm[grid, size](A, W0, B) # B = A @ W0
4 task1 = gemm[grid, size](B, W1, C) # C = B @ W1
5

6 from aries.targets import NPU
7 sch = aries.Schedule([task0, task1])
8 # Case 1: Automatic tiles scheduling
9 sch.to(task0.tiles(), NPU[:4, :2])
10 # Case 2: Explicit tile mapping to AIE cores
11 for (i, j, k), tile in enumerate(task1.tiles()):
12 sch.to(tile, NPU[i%4, 2+j%2])

Figure 6: Mapping task and its tiles to AIE cores.
can either map all task tiles to a core group (Line 9) or explicitly

assign each task tile to specific cores (Line 12). In the first case,

ARIES uses an adaptive core placement algorithm to determine

tile placement that can minimize data movement cost, explained

in Section 5.3. For the second GEMM task in our example, its task

tiles are explicitly mapped along the grid axes (i, j, ...) to AIE

cores NPU[:4, 2:4]. This causes the task tiles along the k axis to be
computed on the same AIE core in sequential order, and the partial

sums over k dimension remain on the same core. As a result, the

GEMM is computed in output-stationary dataflow fashion [29].

Cross-Tile Communication. Data movement between AIE cores

is automatically determined by the task tile placement set by the

user. When task tiles are on adjacent AIE cores, they can exchange

data through the fast DMA interface, where one core directly ac-

cesses the L1 memory of another. When the communicating task

tiles are on non-adjacent AIE cores, data can be directly transferred

via the AXIS streaming interface through hops of on-chip switches.

If a core requires inputs from multiple other cores but exceeds

its input stream channel limit, the data is first gathered in L2/L3
memory before being sent to the destination core for processing.

4.4 Intra-Tile Parallelism
Continuing with the tiled MLP example, we demonstrate how to

optimize the task tiles mapped to each AIE core to maximize paral-

lelism within the core. The code example is shown in Figure 7.

1 axes = task0.get_loops()
2 # Loop-level parallelism: instruction pipeline
3 sch.pipeline(axes[0], range=(1, 64))
4 # Data-level parallelism: SIMD vectorization
5 sch.vectorize(axes, factors=[4, 8, 4])

Figure 7: Intra-core parallelism for each tile.
Loop-Level Parallelism. Users can use .pipeline() primitive

to enable instruction pipelining for the target loops within a task

tile (Line 3). This primitive inserts a directive into the low-level

generated code, allowing the single-AIE-core compiler to schedule

loop operations in a pipelined manner. The factor option specifies

the desired initiation interval as a hint to guide the low-level vendor

compiler in scheduling instructions.

Data-Level Parallelism. The .vectorize() primitive maps speci-

fied loop axes within a task tile into a format that can be processed

by SIMD instructions on a single AIE core. Specifically, this involves

an additional level of loop tiling based on the factors provided by

the user. The memory tiles within the loop are loaded into dedi-

cated vector registers, and the generated low-level code will use

SIMD-specific instructions to perform operations in parallel.

FPGA ’25, February 27-March 1, 2025, Monterey, CA, USA Jinming Zhuang et al.

func.func @top_gemm(%A, %B, %C){
affine.for %i0 = 0 to I step TI_0 {
affine.for %j0 = 0 to J step TJ_0 {
affine.for %k0 = 0 to K step TK_0 {
 affine.for %i1 = 0 to TI_0 step TI_1 {
 affine.for %j1 = 0 to TJ_0 step TJ_1 {
 affine.for %k1 = 0 to TK_0 step TK_1 {
 adf.cell @cell0 {
 affine.for %i2 = 0 to TI_1 step TI_2 {
 affine.for %j2 = 0 to TJ_1 step TJ_2 {
 affine.for %k2 = 0 to TK_1 step TK_2 {
 %off0 = %i2 + %i1 + %i0
 %off1 = %j2 + %j1 + %j0
 %off2 = %k2 + %k1 + %k0
 adf.dma(%A[%off0,%off2][TI_2,TJ_2][1,1], %A_loc)
 adf.dma(%B[%off2,%off1][TJ_2,TK_2][1,1], %B_loc)
 adf.dma(%C[%off0,%off1][TI_2,TK_2][1,1], %C_loc)
 func.call @gemm(%A_loc, %B_loc, %C_loc)
 adf.dma(%C_loc, %C[%off0, %off1][TI_2,TK_2][1,1])
 }}}}
}}}}}}}

func.func @gemm(%A_loc, %B_loc, %C_loc){
affine.for %i3 = 0 to TI_2 {
 affine.for %j3 = 0 to TJ_2 {
 affine.for %k3 = 0 to TK_2 {
 %0 = affine.load %A_loc[%i3, %k3]
 %1 = affine.load %B_loc[%k3, %j3]
 %2 = arith.muli %0, %1 : i32
 %3 = affine.load %C_loc[%i3, %j3]
 %4 = arith.addi %3, %2 : i32
 affine.store %4, %C_loc[%i3, %j3]
}}}}

MLIR program generated by ARIES IR builder

D L1(T)
single core

A L3(T)
off-chip

B L2(T)
 on-chip

C L1(S)
 PE arraya

b

Figure 8: ARIES initial IR including a single AIE, AIE array,
PL, and top configuration of a GEMM kernel.

5 ARIES Representation and Optimizations
We further introduce the IR underlying the proposed programming

models in Section 5.1 and 5.2. We provide a detailed description of

the ARIES initial IR generated by the IR builder and the final IR fed

into the code generation. We then elaborate on the ARIES optimiza-

tions and automation in Section 5.3 that transform the initial IR to

the final IR, delivering significant performance improvement.

5.1 ARIES Representation Overview
ARIES IR Builder and Initial IR.ARIES leverages Allo [23] as the
IR builder to translate our frontend program toMLIR representation.

The GEMM illustrated in Figure 5 is translated into the IR shown

in Figure 8 with the same loop structure marked by 8A○-8D○. The

space-time transformation is presented in the function top_gemm
where loop bands 8A○, 8 B○, 8 C○ represent L3, L2 temporal mapping

and L1 spatial mapping respectively. To identify the spatial loops,

the adf.cell operation is created so that the For loops within its

region can be recognized as spatial mapping during the later stage.

The adf.cell supports up to one reduction loop (8 a○) and two

non-reduction loops constructing a 3D array that better explores the

IO reuse opportunity. The L1 temporal loop band 8D○ that describes

the computation of an AIE core is extracted in the function gemm
and calledwithin function top_gemm. ARIES IR builder will extract

the data movement to/from the AIE using the adf.dma operations.

The adf.dma is a high-level abstraction for n-dimensional data

slicing. It moves data between two memory values, for example

in 8 b○, from external memory %A (source) to the L1 local memory

%A_loc (destination) with three pairs of data slicing information

[offset0, offset1], [size0, size1], and [stride0, stride1].

ARIES Final IR before Translation. ARIES embraces the MLIR

ecosystem, enabling the seamless composition of different dialects

to describe our targeted heterogeneous system, including the AIE

array, AIE core, and PL. The ARIES final IR of a GEMM example is

shown in Figure 9. Overall, the GEMM is spatially mapped to two

AIEs through the reduction dimension K, and can be expressed as

A0×B0 + A1×B1 = C. The conceptual graph of the IR is presented in

snippet 1 where the data is initially stored in off-chip L3 memory.
The AXI4 stream loads the data into L2 memory to enhance data

reuse. It is then transferred to the AIE array via the AXIS/PLIOs.

ARIES explores the inter-AIE data forwarding optimization that

will be introduced in Section 5.3. Instead of evicting data out of

AIE L1 memory to L2 memory, it allows the output temporary

data to be transferred to other spatial AIEs through either the

AXIS connection or shared memory. The code snippet 2 serves

as the top function that instantiated the AIE array graph (9 b○)

called adf_cell0 and the PL function (9 c○) called func_pl. It
also defines the top-level connections in 9 a○ between the data

streams of PL and the ports in the AIE shim interface tile. In code

snippets 3 , 4 , and 5 , ARIES utilizes the proposed ADF dialect, the

existing AIEVec, and MLIR built-in dialects to represent AIE array,

single AIE, and PL programs, respectively. These snippets will be

further explained in the following section.

5.2 ARIES Final IRs
ADF Dialect for AIE Array Construction. We propose an ADF

dialect for exploring inter-tile level parallelism. As illustrated in

snippet 3 , it exposes the IOs to the outside of the AIE array, allo-

cates multiple AIE cores, and defines the connection among AIEs.

More specifically, in the function adf_cell0 at 9 d○, it defines the

input and output PLIOs of the graph which corresponds to the 5

AXIS to AIE connections shown in snippet 1 . ARIES exposes the

IO width and placement configuration through the adf.config
operation. 9 e○ sets %plioA0 to 128 bits and places it at interface

tile [30,4]. The adf.connect is used to establish the connection

between the port to AIE local memory as well as the connection

among AIE local memories. For example, while 9 f○ connects PLIO

%plioA0 to the local memory of AIE 0, 9 h○ performs an L1 data

forwarding between local memory of AIE0 and AIE1. The corre-

sponding conceptual connection is also demonstrated in snippet 1 .

At last func.call (9 g○) is used to allocate the AIEs with the core

placement marked by [col, row].

AIEVec Dialect for Single AIE Core. ARIES reuses the exist-

ing AIEVec dialect proposed in MLIR-AIE [11] to represent the

computation in an AIE core. The AIEVec dialect creates a precise

MLIR representation for the AIE intrinsics [30]. By using this di-

alect, ARIES provides a vector version of the intra-AIE computation

shown in snippet 4 . At 9 i○ and 9 j○, it packs the data in %j3 dimen-

sion by 8 and uses the vector operations to explore the data-level

(SIMD) and instruction-level (VLIW) parallelism of AIE [31].

Built-in Dialects and Directives for PL. The functions of PL are

presented by the builtin-dialects including memref, scf, affine,
etc. in snippet 5 . During the optimization stage, HLS-related direc-

tives including pipeline, dataflow, inline, bind_storage, and interface
will be automatically inferred to improve the performance as shown

in 9 l○. In the GEMM example on Versal, the on-chip BRAMs/U-

RAMs are allocated in the PL to enhance data reuse, thereby pre-

venting computation from being bounded by the off-chip memory

access. As marked by 9 k○, the PL function acts as the data mover,

ARIES: An Agile MLIR-Based Compilation Flow for Reconfigurable Devices with AI Engines FPGA ’25, February 27-March 1, 2025, Monterey, CA, USA

func.func @top_gemm(%A, %B, %C){
 // %A, %B, %C initialization
 adf.connect(%plioA0, %s_A0) {top_config}
 adf.connect(%plioA1, %s_B0) {top_config}
 // ... More Connections
 func.call @adf_cell0(%plioA0, %plioB0,

 %plioA1, %plioB1, %plioC)
 func.call @func_pl(%A, %B, %C, %s_A0,

 %s_B0, %s_A1, %s_B1, %s_C)
}

func.func @adf_cell0(%plioA0, %plioB0,
 %plioA1, %plioB1, %plioC){
 adf.config.plio(%plioA0,128b){"col,chl"=[30,4]}
 // ... More plio configs
 adf.config.plio(%plioC,128b){"col,chl"=[31,4]}
 adf.connect(%plioA0, %A0_loc)
 adf.connect(%plioB0, %B0_loc)
 %C0_loc=call @gemm0(%A0_loc,%B0_loc){[25,0]}
 adf.connect(%C0_loc, %Cin1)
 adf.connect(%plioA1, %A1_loc)
 adf.connect(%plioB1, %B1_loc)
 %Cout=call @gemm(%Cin1,%A1_loc,%B1_loc){[26,0]}
 adf.connect(%Cout, %plioC)}

func.func @gemm0(%A0_loc, %B0_loc){…}
func.func @gemm(%Cin1, %A1_loc, %B1_loc){
%C1_loc = memref.alloc()
scf.for %i3 = 0 to 32 step 1 {
 scf.for %j3 = 0 to 32 step 8 {
 %0 = aievec.upd %Cin1[%i3, %j3]
 vector.transfer_write %0, %C1_loc[%i3, %j3]
 %1 = aievec.upd %C1_loc[%i3, %j3]
 %2 = aievec.ups %1 {shift = 0 : i8}
 scf.for %k3 = 0 to 32 step 1 {
 %3 = aievec.upd %A1_loc[%i3, %k3]
 %4 = aievec.upd %B1_loc[%k3, %j3]
 %5 = aievec.concat %4, %4
 %6 = aievec.mac %5, %3, %2
 %7 = aievec.srs %6, 0
 vector.transfer_write %7, %C1_loc[%i3, %j3]
}}}
return %C1_loc}

func.func @func_pl(%A, %B, %C, %s_A0, %s_B0,
 %s_A1, %s_B1, %s_C)
 attributes {dataflow} {
 call @loadA(%A, %stream_A0, %stream_A1)
 call @loadB(%B, %stream_B0, %stream_B1)
 call @sendA0(%stream_A0, %s_A0)
 call @sendB0(%stream_B0, %s_B0)

 // ... More funcs push data to AIE
 call @receiveC(%s_C, %stream_C)
 call @storeC(%stream_C, %C)}

func.func @loadA(%A, %s_A0, %s_A1, ...){
affine.for %i0 = 0 to TI_0 {
affine.for %j0 = 0 to TJ_0 {
affine.for %k0 = 0 to TK_0 {
 affine.for %i1 = 0 to TI_1 {
 affine.for %k1 = 0 to TJ_1 {
 affine.for %i2 = 0 to TI_2 {
 affine.for %k2 = 0 to TJ_2 {
 affine.for %i3 = 0 to TI_3 {
 affine.for %k3 = 0 to TJ_3 {
 %0 = affine.load %A[%addr0, %addr1]
 %1 = arith.cmpi eq, %k2, 0 /%k2==0
 scf.if %1 {
 affine.store %0, %s_A0
 } else {
 %2 = arith.cmpi eq, %k2, 1//%k2==1
 scf.if %2 {
 affine.store %0, %s_A1
 }else{
 // ... More data split logics
 }
 }

}{pipeline_ii = 1, inline = off}}}}}}}}}}
// ... More func definition e.g. loadB

1 Conceptual Graph of the IR

2 Top Func & Connect-- Builtin Dialects

3 AIE Array IR -- ADF Dialect

4 Single AIE IR -- AIEVec Dialect

5 Programmable Logic IR -- Builtin Dialects

B0

B1

A0 A1

C

AIE0 AIE1

L3 Mem

L2 Mem/PL

AIE Array

AXI4 from/to DDR

AXIS from/to AIE

AXIS/Shared Mem

a

b

c

f

g
h

f

h

d
e

g

d

i
j

j

l

l

m

m

n

o

k

o

k

h

k

Figure 9: ARIES representation including single AIE, AIE array, PL, and top configuration of a GEMM example.

Table 2: Summerization of passes in ARIES framework.
Opt Level Objects Passes Descriptions

Global Dataflow Graph

-broadcast-detection Detect DMA broadcast

-data-forwarding Enable L1 data forwarding

Local

AIE Array

-dma-to-io Convert memory dma by IOs and connects

-adf-cell-create Create the ADF graph connections

-io-materialize
1

Materialize IO to GMIO or PLIO

-io-packing
1

Specify the AIE IO width

-core-placement
1

Place 3D logic array on 2D physical layout

-io-placement
1

Place IOs on the AIE IO tiles

AIE Core

-aie-vectorize
2

Vectorize specific loops by factors

-kernel-interface Enable automatic lock control for cores

PL

-axi-packing Increase the AXI width for higher DDR BW

-burst-detection Increase DDR burst by merging interleaved access

-pl-double-buffer Create double buffers for the functions in PL

-pipeline-ii
3

Specify the pipeline II of functions in PL

Note:
1
with parameter from primitive .to(); 2 with parameter from primitive .vectorize();

3
with parameter from primitive .pipeline().

transferring data from off-chip memory (%A, %B, %C) to the on-chip

buffer and sending it to the streams (%s_xxx) that are finally con-

nected to the AIE array for computation. The sub-functions are

defined in the top function of PL adopting a full task-level pipeline

in HLS design under dataflow pragma (9m○). For illustration pur-

poses, we provide the function definition of LoadA, where the

data is read from the off-chip memory %A to the register %1 using

affine.load operation (9 n○) and is interleaved written to the cor-

responding internal stream by affine.store(9 o○) respectively.

5.3 ARIES Optimizations and Automation
ARIES introduces a set of automated optimization and transfor-

mation passes that lower the initial IR to the final IR. These opti-

mizations are categorized into global, which operate at the graph

level, and local, which target code sections mapped to the specific

hardware hierarchy, as summarized in Table 2.

Global Optimizations. When conducting global optimizations,

ARIES decouples the high-level dataflow graph optimizations from

(c) Date movement IR before and after optimizations

1

2

1

1

2 2

PE0B0

A0
PE1B2

A1

Sub_C0

PE2B1

A0
PE3B3

A1

Sub_C1

C0

C1

PE0B0

A0

PE1B2

A1

PE2B1 PE3B3

C0

C1

A0 A1

B0 B1

B2 B3

C0 C1

x

=

(a) GEMM (b) Dataflow graph before and after optimizations

Before After

func.func @top_gemm(%A, %B, %C){
 adf.dma(%A[0,0][TI,TK][1,1],
 %PE0_A, %PE2_A) //Broadcast
 adf.dma(%B[0,0][TK,TJ][1,1], %PE0_B)
 %Sub_C0=func.call @PE0(%PE0_A, %PE0_B)
 adf.dma(%A[0,TK][TI,TK][1,1], %PE1_A)
 adf.dma(%B[TK,0][TK,TJ][1,1], %PE1_B)
 adf.dma(%Sub_C0, %PE1_Cin)//Forwarding
 %PE1_C=func.call @PE1(%PE1_A, %PE1_B,
 %PE1_Cin)
 adf.dma(%PE1_C, %C[0,0][TI,TJ][1,1])
 // PE2 && PE3 ...}

func.func @top_gemm(%A, %B, %C){
 adf.dma(%A[0,0][TI,TK][1,1], %PE0_A)
 adf.dma(%B[0,0][TK,TJ][1,1], %PE0_B)
 %Sub_C0=func.call @PE0(%PE0_A, %PE0_B)
 adf.dma(%Sub_C0, %C[0,0][TI,TJ][1,1])
 adf.dma(%A[0,TK][TI,TK][1,1], %PE1_A)
 adf.dma(%B[TK,0][TK,TJ][1,1], %PE1_B)
 adf.dma(%C[0,0][TI,TJ][1,1], %PE1_Cin)
 %Sub_C1=func.call @PE1(%PE1_A, %PE1_B,
 %PE1_Cin)
 adf.dma(Sub_C1, %C[0,0][TI,TJ][1,1])
 adf.dma(%A[0,0][TI,TK][1,1], %PE2_A)
 // ... PE3 ...}

Figure 10: ARIES global optimizations.
the hardware specifications. It allows for flexible and scalable opti-

mizations that can be refined for specific hardware components or

architectures in a later stage. We use another GEMM as an example

shown in Figure 10(a) to demonstrate the global passes including

broadcast-detection and data-forwarding. As introduced
in Section 5.1, ARIES IR builder will extract the data movement

where the conceptual graph and its IR are shown in the Before
side of Figure 10(b) and (c). The tiles corresponding to each PE,

e.g., A0, are sent to the local buffer of the PE (%PE0_A) through the

adf.dma operation. Before conducting the global passes, the same

tile will be loaded from the external memory to the local memory

repetitively as marked by 10 1○. Besides, the intermediate result

from PE0 and PE2will be stored to the external memory and loaded

back as marked by 10 2○. The conceptual graph and the IR after

optimization are also demonstrated in Figure 10. To avoid loading

FPGA ’25, February 27-March 1, 2025, Monterey, CA, USA Jinming Zhuang et al.

func.func @adf_cell0(%portA0, %portB0,
 %portC0, ...){
 adf.connect(%portA0, %PE0_A)
 adf.connect(%portA0, %PE2_A) //Broadcast
 adf.connect(%portB0, %PE0_B)
 // ... More connections between
 // Ports and L1 Mems
 %PE0_C=func.call @PE0(%PE0_A, %PE0_B)
 adf.connect(%PE0_C, %PE1_Cin)//Forwarding
 %PE1_C=func.call @PE1(%PE1_A, %PE1_B,
 %PE1_Cin)
 adf.connect(%PE1_C, %portC0)
 // PE2 && PE3 ...}

func.func @top_gemm(%A, %B, %C){
 adf.io.push(%A[0,0][TI,TK][1,1], %portA0)
 adf.io.push(%B[0,0][TK,TJ][1,1], %portB0)
 func.call @adf_cell0(%portA0, %portB0,
 %portC0,...)
 adf.io.pop(%portC0, %C[0,0][TI,TJ][1,1])
 // PE2 && PE3 ...}

func.func @adf_cell0(%plioA0,%plioB0,%plioC0,...){
 adf.config.io(%plioA0, 128){"col,chl"=[30, 4]}
 // ... More IO configs
 adf.connect(%plioA0, %PE0_A)
 adf.connect(%plioA0, %PE2_A) // Broadcast
 adf.connect(%plioB0, %PE0_B)
 // ... More connections between PLIO and L1 Mems
 %PE0_C=func.call @PE0(%PE0_A, %PE0_B){[25, 0]}
 adf.connect(%PE0_C, %PE1_Cin)// Data forwarding
 %PE1_C=func.call @PE1(%PE1_A, %PE1_B,
 %PE1_Cin){[26, 0]}
 adf.connect(%PE1_C, %plioC0)
 // PE2 && PE3 ...}

func.func @func_pl(%A, %B, %C, %s_A0, %s_B0,
 %s_C0,...){
 adf.io.push(%A[0,0][TI,TK/IOPACK][1,1], %s_A0)
 adf.io.push(%B[0,0][TK,TJ/IOPACK][1,1], %s_B0)
 // ... More push & pop ops
 adf.io.pop(%s_C0, %C[0,0][TI,TJ/IOPACK][1,1])}

func.func @top_gemm(%A, %B, %C){
 adf.connect(%plioA0, %s_A0) {top_config}
 adf.connect(%plioB0, %s_B0) {top_config}
 adf.connect(%plioC0, %s_C0) {top_config}
 // ... More connections
 func.call @adf_cell0(%plioA0, %plioB0, %plioC0,
 ...)
 func.call @func_pl(%A, %B, %C, %s_A0, %s_B0,
 %s_C0 ...)}

(a) IR Before IO Materialize (b) IR After IO Materialize and Placement

1

1

2

2

3

3
4

5

Figure 11: ARIES local optimizations.

the same tile of data multiple times, the broadcast-detection
pass will walk through all the adf.dma operations to gather the

destination memories of the ones with the same source memories.

The data-forwarding pass will optimize the data movement by

eliminating the consecutive store and load pairs that access the

same tile of external memory.

Local Optimizations. After the global optimizations, the passes

for local optimizations will be called following the order listed in Ta-

ble 2. The adf.dma operations will be converted to adf.io.push
or adf.io.pop operations to involve the IO information using the

dma-to-io pass. Instead of moving data between two memories,

the data will be pushed or popped from one memory to an IO port

and then the IO port will be connected to the other memory as

marked by 11 1○. The adf-cell-create pass then extracts the

construction of the AIE array into the function adf_cell0 shown

in Figure 11(a). According to the user-specified IO type from .to()
primitive in the programming interface, the IO port will be materi-

alized to GMIO or PLIO by io-materialize pass where GMIO

and PLIO refer to the IOs connecting the AIE array with external

memory and PL respectively. For designs with PLIO, a function

representing the logic in the PL side will be created through this

pass(11 2○). In order to balance the IO bandwidth to the AIE array,

the io-packing pass will configure the materialized IO to the

specified port width, frequency, and burst length(11 3○). The size

and data type of the memory in adf.io.push and adf.io.pop
operations will also be adjusted (11 3○).

ARIES provides the default AIE core placement algorithms and

the IO placement algorithm to help alleviate routing congestion

when scaling to hundreds of AIEs. The AIE core placement al-

gorithm aims to map the 3D logic AIE array to the 2D physical

AIE array. To leverage the shared memory and cascade IO connec-

tions of the AIEs in the reduction dimension (dim), the cores are

required to be placed in adjacent locations. ARIES designs three

placers to allocate the AIEs in reduction dims horizontally-adjacent,

vertically-adjection, and zigzag-adjacent. We demonstrate the hori-

zontal placer in Algorithm 1. For each core, it takes as inputs the

3D AIE ID (i, j, k), the total number of AIEs in each dim (PI,
PJ, PK), the column and row offset (colOff, rowOff), and the

available AIEs in the physical 2D array (colNum, rowNum). Based

Algorithm 1 AIE Core Placement Algorithm

Input: i, j, k, PI, PJ, PK, colOff, rolOff, colNum, rowNum
Output: col_pos, row_pos
1: function horizontal_placer(i, j, k, PI, PJ, PK, colNum, rowNum)

2: curRowNum = rowNum - rolOff

3: if PJ >= PI then
4: height = min(PJ, curRowNum)

5: serialized_ij_id = j + i * PJ

6: else
7: height = min(PI, curRowNum)

8: serialized_ij_id = i + j * PJ

9: colReq = ceil(PI * PJ * PK / height)

10: if colReq > colNum then
11: return false;

12: remi = serialized_ij_id % height

13: quot = serialized_ij_id // height

14: pid = remi + PK * height + quot * PK * height

15: return pid, height

16: function main_placer(i, j, k, PI, PJ, PK, colOff, rolOff, colNum, rowNum)

17: pid, height = HORIZENTAL_PLACER(i, j, k, PI, PJ, PK, colNum, rowNum)

18: col_pos = colOff + pid // height

19: row_pos = rowOff + pid % height

on the placement ID (pid) and height generated by different plac-

ers, the column and row position (col_pos, row_pos) of an AIE

core can be calculated by Lines 18-19. Without loss of generality,

we assume k is the reduction dim in the algorithm. For the hori-

zontal placer, the AIEs cores with the same ID in dim i and j, and
consecutive ID in dim k will be placed in the same row but in dif-

ferent columns. Then by judging the total number of AIEs in dim i
and j, it calculates the serialized i and j IDs (serialized_ij_id)
which determines the AIE cores to be placed in adjacent rows (Lines

3-8). The height of the physical 2D AIE array is chosen from the

minimum value of PI/PJ and the number of physical rows in the

AIE array. In Lines 12-14, the pid can be generated based on the

serialized_ij_id and height. ARIES offers the user the exten-
sibility of defining customized placement algorithms using .to()
primitives introduced in Section 4.3. Based on the core placement

algorithm, ARIES applies a routing-aware IO placement algorithm

proposed in [32] for both PLIO and GMIO where it places the IOs in

the available channel of the interface tile that leads to the least west

and east routing congestion. By running the core-placement
and io-placement passes, the position of each IO and core will

be attached as marked by 11 4○ and 11 5○. For AIE core optimiza-

tions, based on the user-specified configurations, ARIES applies the

vectorization over loops using the affine passes including affine-
unroll and affine-super-vectorize. Then aie-vectorize
pass in MLIR-AIE [11] is utilized to generate the AIE vector IR in

aievec dialect. To make the current flow compatible for both Vitis

ADF and pure AIE compilers, kernel-interface pass is used to

modify the type of AIE kernel interfaces.

On the PL side, the adf.io.push and adf.io.pop marked

by 11 3○ will further be lowered to the builtin memref, scf, and
affine dialects before code generation. ARIES implements passes

to make full use of the off-chip bandwidth by automatically pack-

ing AXI4 port width (axi-packing) and detecting opportuni-

ties to increase the burst length(burst-detection). The double
buffer technique is utilized by the pass pl-double-buffer to

overlap the time spent on off-chip access with the on-chip process-

ing time. ARIES allows users to customize their designs with the

pipeline_ii configuration, defaulting to 1 if not specified.

ARIES: An Agile MLIR-Based Compilation Flow for Reconfigurable Devices with AI Engines FPGA ’25, February 27-March 1, 2025, Monterey, CA, USA

Overall Optimization Insights. Adopting the MLIR ecosystem,

ARIES optimizes designs globally and locally, ensuring extensibil-

ity and reusability for future AIE architectures. For global opti-

mizations, it abstracts dataflow without hardware specifics (e.g.,

PLIO, GMIO, Mem-tile), allowing for the analysis of general data

movement optimizations, such as broadcast and packet-switch pat-

terns, as well as top-down customization of dataflows like output-

stationary dataflow and systolic-array architectures. Unlike bottom-

up approaches, which require significant modifications across com-

ponents when optimizing one (e.g., AIE array, core, or Mem-tile),

this top-down method minimizes the changes in the other compo-

nents. For local optimizations, all components remain a unified IR,

ensuring that local optimizations are aware of the other compo-

nents. For example, adjusting the IO port width in the AIE array will

automatically trigger updates to memory data types for the buffer

shown in 11 3○. ARIES offers a unified, open-source framework that

provides optimized solutions for different AIE-related backends,

while also enabling users to explore customized optimizations.

6 Evaluation
This section presents on-board evaluation results of ARIES using

realistic benchmarks. For Versal ACAP AIE architectures, we use

the VCK190 evaluation board, featuring 8×50 AIE cores, 90K LUTs,

1968 DSP58s, 967 BRAMs, 463 URAMs, and one 25.6GB/s DDR4-

DIMM. For all the experiments on Versal, ARIES uses AMD Vitis

version 2023.1 as our backend compiler. To measure power con-

sumption, each benchmark is executed for over 60 seconds, and

the average power is reported using the AMD board evaluation

and management tool [33]. For Ryzen-AI NPU architectures, the

tests are conducted on an AMD Ryzen™ 9 7940HS CPU, which

includes an integrated NPU with 4×5 AIE-ML cores. We use AMD

Vitis 2023.2 and MLIR-AIE [11] for NPU compilation.

6.1 Single-Kernel Benchmarks
We first evaluate widely adopted tensor algebra benchmarks used

in [6, 15, 7, 34, 35, 36]. The algorithms of the benchmarks including

GEMM, TTM, TTMc, and MTTKRP are defined by equation (1)-(4).

𝐺𝐸𝑀𝑀 : 𝐶 (𝑖, 𝑗)+ = 𝐴(𝑖, 𝑘) × 𝐵(𝑘, 𝑗) (1)

𝑇𝑇𝑀 : 𝐶 (𝑖, 𝑗, 𝑘)+ = 𝐴(𝑖, 𝑗, 𝑙) × 𝐵(𝑙, 𝑘) (2)

𝑇𝑇𝑀𝑐 : 𝐷 (𝑖, 𝑗, 𝑘)+ = 𝐴(𝑖, 𝑙,𝑚) × 𝐵(𝑙, 𝑗) ×𝐶 (𝑚,𝑘) (3)

𝑀𝑇𝑇𝐾𝑅𝑃 : 𝐷 (𝑖, 𝑗)+ = 𝐴(𝑖, 𝑘, 𝑙) × 𝐵(𝑘, 𝑗) ×𝐶 (𝑙, 𝑗) (4)

GEMMBenchmarks under Various Data Types. For the GEMM

benchmark, we compare the on-board throughput and energy ef-

ficiency on Versal VCK190 with the SOTA solutions [15, 7] under

FP32, INT16, and INT8 data types in Table 3. The I * J * K represents

the AIE array parallelism factors on the three dimensions of GEMM.

For the intra-AIE design, all the GEMM benchmarks apply the

well-optimized kernel proposed by CHARM23 [6]. CHARM24 [7]

and AutoMM [15] extensively explore the PLIO reuse by apply-

ing combined broadcast and packet-switch connections. Although

it requires less number of PLIOs, their data reuse pattern relies

greatly on the computation-to-communication ratio of the single

core. ARIES explores broadcast opportunities, proposes different

core placement algorithms, and applies a routing-aware IO place-

ment algorithm, thus achieving 1.2× and 1.7× higher AIE utilization

under INT16 and INT8 data types without performance degradation.

CHARM24 [7] and AutoMM [15] improve the AIE array efficiency

by adopting fine-grained cascade connection between AIEs and

the bubble-free data movement between PL and AIEs. However,

due to the double buffer synchronization HLS style on the PL side,

the communication efficiency for the AIE array is around 80%. In

contrast, ARIES adopts a full task-level pipeline HLS style which

achieves around 95% AIE array efficiency. The analysis can also

be verified through our experiments. With FP32 data, ARIES uses

352 AIEs – 8% fewer than two baseline designs – while achieving

1.31× and 1.18× higher throughput compared to CHARM24 [7] and

AutoMM [15]. As these three designs share the same intra-AIE opti-

mization, ARIES achieves the gain on throughput from the efficient

data movement between PL and AIE array. For INT16 and INT8

data types with higher AIE utilization and AIE array efficiency,

ARIES achieves up to 2.11× and 1.63× throughput gain compared

to AutoMM [15]. The higher throughput also leads to higher power

consumption in ARIES designs. However, ARIES still achieves up

to 1.20×, 1.57×, and 1.35× better energy efficiency compared to

AutoMM [15] for FP32, INT16 and INT8 data types.

TTM, TTMc, and MTTKRP Benchmarks. For TTM, TTMc, and

MTTKRP benchmarks, we conduct experiments on VCK190 un-

der INT32 data type. The tiling factors, resource utilization, and

throughput are summarized in Table 4. We tile each loop 4 times

where the loop index from 0-3 represents the memory hierarchy

from external to internal. More specifically, indices i3-m3 represent

the data stored in AIE local memory. Indices i2-m2 are the spatial

loops unrolled on the AIE array. Indices i1-m1 are the array parti-

tioning loops that determine the data reuse on the SRAM of the PL

side. Indices i0-m0 represent the off-chip to on-chip data movement.

Based on our core and IO placement algorithms, we utilize 352, 192,

and 192 AIEs for TTM, TTMc, and MTTKRP benchmarks. ARIES

achieves 4.9, 4.8, and 4.8 TOPS under INT32 data type with 87%,

80.6%, 80.6% overall AIE efficiency. Note that the throughput for

TTMc and MTTKRP is an effective throughput where we explore

algorithm optimization to reduce the multiply operations.

Benefits of ARIES Compilation Framework. To demonstrate

the advantages of ARIES in enhancing productivity and improving

the success rate of AIE-related designs, we present an evaluation

in Table 5. It compares lines of code (LoC), ARIES compilation

time, AIE placement and routing (PnR) time, and PnR results across

GEMM benchmarks with AIEs ranging from tens to hundreds. Ver-

sal VCK190 and AMD Vitis were selected as the backend device

and tool to illustrate the benefits of ARIES. The compilation is run-

ning on a virtual machine of an Intel Xeon Gold 6346 CPU with 32

threads and 128GB memory enabled. Using ARIES Python-based

programming model, only 25 LoC is required from the user for all

design cases with small modifications to the number of grids. We

also report the ARIES compilation time, Vitis AIE PnR time, and

the corresponding PnR result when the AIE core and IO placement

optimizations proposed by ARIES are enabled and disabled. The

ARIES compilation time is from the initial IR to the final code after

the generator. The Vitis AIE PnR time is from the vendor tool report

for compiling the generated design. By applying our AIE core and

IO placement optimizations, ARIES reduces the average PnR time

from 2300s to 64.9s with 0.3s of additional compilation time. For

designs with over 128 AIEs, ARIES core and IO placement algorithm

enables successful placement and routing, whereas no solution can

be found without ARIES optimizations.

FPGA ’25, February 27-March 1, 2025, Monterey, CA, USA Jinming Zhuang et al.

Table 3: On-board throughput and power comparisons of GEMM benchmark under FP32, INT16, INT8 data types.

DType Works Para (I*J*K) LUT BRAM URAM DSP PLIOs AIE TOPS Power(W) GOPS/W

FP32

ARIES (Ours) 11x8x4 191,324(21.26%) 855 (88.42%) 352 (76.03%) 374 (19.00%) 76 + 88 352 (88%) 4.92 (1.31x) 63.8 77.1 (1.20x)
CHARM [7] 12x8x4 103,959(11.55%) 764 (79.01%) 384 (82.94%) 165 (8.38%) 72 + 24 384 (96%) 4.18 (1.11x) 61.9 67.5 (1.05x)

AutoMM [15] 12x8x4 64,849(7.20%) 661 (68.36%) 384 (82.94%) 163 (8.28%) 72 + 24 384 (96%) 3.75 (1.00x) 58.3 64.3 (1.00x)

INT16

ARIES (Ours) 11x8x4 184,373(20.49%) 631 (65.25%) 352 (76.03%) 46 (2.34%) 76 + 88 352 (88%) 15.86 (2.11x) 76.3 207.9 (1.57x)
CHARM [7] 12x3x8 111,626(12.41%) 885 (91.52%) 384 (82.94%) 91 (4.62%) 72 + 48 288 (72%) 10.03 (1.34x) 64.8 154.8 (1.17x)

AutoMM [15] 12x3x8 92663(10.30%) 477 (49.33%) 384 (82.94%) 93 (4.73%) 72 + 48 288 (72%) 7.51 (1.00x) 56.8 132.2 (1.00x)

INT8

ARIES (Ours) 10x8x4 144,825(16.09%) 823 (85.11%) 320 (69.11%) 0 (0.00%) 72 + 80 320 (80%) 45.94 (1.63x) 73.8 622.5 (1.35x)
CHARM [7] 8x6x4 115,628(12.85%) 662 (68.46%) 388 (83.80%) 71 (3.61%) 80 + 24 192 (48%) 31.31 (1.11x) 62.7 499.4 (1.08x)

AutoMM [15] 8x6x4 85,073(9.45%) 669 (69.18%) 384 (82.94%) 71 (3.61%) 80 + 24 192 (48%) 28.15 (1.00x) 61.0 461.5 (1.00x)

Table 4: Tiling factors, resource utilization and throughput
of TTM, TTMc and MTTKRP under INT32 data type.

TTM TTMc MTTKRP
i0,j0,k0,l0,m0 2,2,2,64,- 2,2,2,8,8 2,2,8,8,-

i1,j1,k1,l1,m1 1,4,6,1,- 1,2,2,8,8 2,8,6,4,-

i2,j2,k2,l2,m2 1,11,8,4,- 1,8,12,1,2 8,12,1,2,-

i3,j3,k3,l3,m3 1,32,32,32,- 2,16,16,16,32 2,32,16,32,-

LUT 198510(22.06%) 142266(15.81%) 192936(21.44%)

BRAM 855(88.42%) 286.5(29.63%) 942.5(97.47%)

URAM 352(76.03%) 128(27.65%) 448(96.76%)

DSP 20(1.02%) 0(0.00%) 0(0.00%)

PLIOs 76+88 34+96 52+96

AIEs 352(88%) 192(48%) 192(48%)

TOPS 4.9 4.8 4.8
AIE Efficiency 87% 80.6% 80.6%

Table 5: Lines of code (LoC), ARIES and AIE PnR compilation
time comparison across different AIE scales for GEMM— CIP

refers to AIE core and IO placement optimizations in ARIES.

AIEs ARIES
LoC

CIP
Enabled

ARIES
Comp.

AIE PnR
Time PnR

32 ~25

N 0.26s 19.7s ✓
Y 0.28s 10.4s ✓

64 ~25

N 0.42s 1828.2s ✓
Y 0.45s 23.7s ✓

128 ~25

N 0.89s 1874.7s ✓
Y 0.96s 44.1s ✓

256 ~25

N 2.29s >3600s ×
Y 2.47s 110.9s ✓

320 ~25

N 3.28s >4200s ×
Y 3.49s 135.3s ✓

6.2 Multi-Layer Applications
Residual Neural Network Layer. We implement a residual neural

network layer from ResNet [37] in ARIES. Our evaluation focuses

on the performance of different design configurations by toggling

scheduling primitives in ARIES when mapping the target applica-

tion to the NPU device. The ResNet layer processes an input image

of size 64x64 with 256 channels in the INT8 data type. It comprises

three tasks: (1) a Conv1×1 task with 256 input channels (IC) and

64 output channels (OC), (2) a Conv3×3 task with 64 IC and 64

OC, and (3) another Conv1×1 task with 64 IC and 256 OC, fused

with an element-wise addition operator for the skip connection. We

conducted an ablation study using various scheduling primitives in

ARIES and compared the results to the optimized INT8 NPU design

from Ryzen-AI-SW [20]. The results are presented in Table 6.

In design D1 of ARIES, these tasks are mapped to three adjacent

AIE cores respectively to take advantage of task-level parallelism.

Table 6: ResNet layer evaluation onRyzen-AI NPU— SL stands

for SIMD lane; IP indicates if instruction pipeline is enabled. Util

means the utilization of all AIE cores on the Ryzen-AI NPU device.

RT refers to run time excluding host-side memory copy overhead.

Designs Tile SL IP Util (%) RT (ms) Speedup

D1 scalar [16, 16] 1 No 15 57.40 1.24

D2 +vectorized [16, 16] 4 No 15 16.63 4.29

D3 +vectorized [16, 16] 8 No 15 9.82 7.27

D4 +conv3×3-2core [16, 16] 8 No 20 9.18 7.77

D5 +inst-pipeline [16, 16] 8 Yes 20 8.44 8.45

D6 +opt-tile-size [32, 16] 8 Yes 20 5.72 13.70

D7 +opt-tile-size [32, 32] 8 Yes 20 5.21 12.48

D8 +opt-tile-size [32, 64] 8 Yes 20 4.99 14.30

D9 +more-cores [32, 64] 8 Yes 40 3.16 22.58

Riallto / RAI-SW[20] - - - 20 71.36 1x

The intermediate results are directly transferred between AIE cores

using DMA access to the neighboring core’s L1 memory. Although

D1 is under-optimized, it outperforms Ryzen-AI’s overlay-based

approach because it caches intermediate results in the on-chip

L1 cache. In contrast, the Ryzen-AI overlay utilizes more cores to

accelerate a single task, writes results to slow L3 memory, and then

processes the next task. In D2 and D3, vectorization is applied to OC

dimension to allow SIMD processing. In D4, the second Conv3×3
task is tiled in OC dimension and mapped to 2 AIE cores to exploit

tile-level parallelism. In D6-8, we adjusted the tile sizes for the

image’s height and width dimensions. In D9, we increased tile-level

parallelism across height and width by mapping more tiles to AIE

cores, achieving a 22.58× speedup over the Ryzen-AI-SW overlay.

7 Conclusion
We present ARIES, an MLIR-based compilation flow for AIE-based

reconfigurable devices. ARIES provides a programming model to

exploit multi-level parallelism with higher productivity and a uni-

fied IR for automated holistic optimizations. Currently, ARIES pro-

vides an open-source infrastructure for end-to-end applications on

AIE-related architectures with high performance and productivity.

It also provides the opportunity for the entire community to ex-

plore more advanced DSE solutions to improve the parallelism and

data movement of multi-layer applications. In addition, we plan

to integrate existing PL optimizations proposed by MLIR-based

frameworks including ScaleHLS [38], HIDA [39], HeteroCL [40],

HeteroFlow [41] and also come up with new methodologies.

ACKNOWLEDGEMENTS – This work is supported in part by Brown

University New Faculty Start-up Grant, NSF awards #2019306, #2213701,

#2217003, #2324864, #2328972; ACE, one of seven centers in JUMP 2.0, an

SRC program sponsored by DARPA. We thank AMD for the FPGA and

software donations.

ARIES: An Agile MLIR-Based Compilation Flow for Reconfigurable Devices with AI Engines FPGA ’25, February 27-March 1, 2025, Monterey, CA, USA

References
[1] Thomas Norrie, Nishant Patil, Doe Hyun Yoon, George Kurian, Sheng Li, James

Laudon, Cliff Young, Norman Jouppi, and David Patterson. The design process

for Google’s training chips: TPUv2 and TPUv3. IEEE Micro, 41(2):56–63, 2021.
[2] Alejandro Rico, Satyaprakash Pareek, Javier Cabezas, David Clarke, Baris Ozgul,

Francisco Barat, Yao Fu, Stephan Münz, Dylan Stuart, Patrick Schlangen, et al.

AMD XDNA™ NPU in Ryzen™ AI Processors. IEEE Micro, 2024.
[3] Linley Gwennap. Tenstorrent Scales AI Performance. https://tenstorrent.com/

vision/tenstorrent-scales-ai-performance, 2020.

[4] Eric Mahurin. Qualocmm®Hexagon™NPU. In 2023 IEEE Hot Chips 35 Symposium
(HCS), pages 1–19. IEEE Computer Society, 2023.

[5] AMD. Versal Adaptive SoC AIE-ML Architecture Manual (AM020), 2024.

[6] Jinming Zhuang, Jason Lau, Hanchen Ye, Zhuoping Yang, Yubo Du, Jack Lo,

Kristof Denolf, Stephen Neuendorffer, Alex Jones, Jingtong Hu, Deming Chen,

Jason Cong, and Peipei Zhou. CHARM: Composing Heterogeneous AcceleR-

ators for Matrix Multiply on Versal ACAP Architecture. In Proceedings of the
2023 ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
FPGA ’23, page 153–164, New York, NY, USA, 2023. Association for Computing

Machinery.

[7] Jinming Zhuang, Jason Lau, Hanchen Ye, Zhuoping Yang, Shixin Ji, Jack Lo, Kristof

Denolf, Stephen Neuendorffer, Alex Jones, Jingtong Hu, Yiyu Shi, Deming Chen,

Jason Cong, and Peipei Zhou. CHARM 2.0: Composing Heterogeneous Accelera-

tors for Deep Learning on Versal ACAP Architecture. ACM Trans. Reconfigurable
Technol. Syst., aug 2024. Just Accepted.

[8] Endri Taka, Aman Arora, Kai-Chiang Wu, and Diana Marculescu. MaxEVA:

Maximizing the Efficiency of Matrix Multiplication on Versal AI Engine. In 2023
International Conference on Field Programmable Technology, pages 96–105, 2023.

[9] Gagandeep Singh, Alireza Khodamoradi, Kristof Denolf, Jack Lo, Juan Gomez-

Luna, Joseph Melber, Andra Bisca, Henk Corporaal, and Onur Mutlu. SPARTA:

Spatial Acceleration for Efficient and Scalable Horizontal Diffusion Weather

Stencil Computation. In Proceedings of the 37th ACM International Conference on
Supercomputing, ICS ’23, page 463–476, New York, NY, USA, 2023. Association

for Computing Machinery.

[10] AMD. Riallto: An exploration framework for the AMD Ryzen AI NPU. https:

//riallto.ai/. Accessed: 2024-09-15.

[11] AMD. MLIR-AIE: An MLIR-based AI Engine toolchain. https://xilinx.github.io/

mlir-aie/. Accessed: 2024-09-15.

[12] AMD. MLIR-AIR: An MLIR-based toolchain for AMD AI Engine-enabled devices.

https://xilinx.github.io/mlir-air/AIRDialect.html. Accessed: 2024-09-15.

[13] Alejandro Rico, Satyaprakash Pareek, Javier Cabezas, David Clarke, Baris Ozgul,

Francisco Barat, Yao Fu, Stephan Münz, Dylan Stuart, Patrick Schlangen, et al.

AMD XDNA™ NPU in Ryzen™ AI Processors. IEEE Micro, 2024.
[14] Brian Gaide, Dinesh Gaitonde, Chirag Ravishankar, and Trevor Bauer. Xilinx

Adaptive Compute Acceleration Platform: Versal™ Architecture. In Proceedings
of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, pages 84–93, 2019.

[15] Jinming Zhuang, Zhuoping Yang, and Peipei Zhou. High Performance, Low Power

Matrix Multiply Design on ACAP: from Architecture, Design Challenges and

DSE Perspectives. In 2023 60th ACM/IEEE Design Automation Conference (DAC),
pages 1–6, 2023.

[16] Zhuoping Yang, Jinming Zhuang, Jiaqi Yin, Cunxi Yu, Alex K. Jones, and Peipei

Zhou. AIM: Accelerating Arbitrary-Precision Integer Multiplication on Hetero-

geneous Reconfigurable Computing Platform Versal ACAP. In 2023 IEEE/ACM
International Conference on Computer Aided Design (ICCAD), pages 1–9, 2023.

[17] Jinming Zhuang, Zhuoping Yang, Shixin Ji, Heng Huang, Alex K. Jones, Jingtong

Hu, Yiyu Shi, and Peipei Zhou. SSR: Spatial Sequential Hybrid Architecture for

Latency Throughput Tradeoff in Transformer Acceleration. In Proceedings of the
2024 ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
FPGA ’24, page 55–66, New York, NY, USA, 2024. Association for Computing

Machinery.

[18] Peiyan Dong, Jinming Zhuang, Zhuoping Yang, Shixin Ji, Yanyu Li, Dongkuan Xu,

Heng Huang, Jingtong Hu, Alex K. Jones, Yiyu Shi, Yanzhi Wang, and Peipei Zhou.

EQ-ViT: Algorithm-Hardware Co-Design for End-to-End Acceleration of Real-

Time Vision Transformer Inference on Versal ACAP Architecture. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, 43(11):3949–
3960, 2024.

[19] Chengming Zhang, Tong Geng, Anqi Guo, Jiannan Tian, Martin Herbordt, Ang

Li, and Dingwen Tao. H-GCN: A Graph Convolutional Network Accelerator

on Versal ACAP Architecture. In 2022 32nd International Conference on Field-
Programmable Logic and Applications (FPL), pages 200–208, 2022.

[20] AMD. AMD Ryzen™ AI Software Stack. https://www.amd.com/en/developer/

resources/ryzen-ai-software.html. Accessed: 2024-09-15.

[21] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael

Voznesensky, Bin Bao, Peter Bell, David Berard, Evgeni Burovski, et al. Pytorch 2:

Faster machine learning through dynamic python bytecode transformation and

graph compilation. In Proceedings of the 29th ACM International Conference on

Architectural Support for Programming Languages and Operating Systems, Volume
2, pages 929–947, 2024.

[22] Philippe Tillet, Hsiang-Tsung Kung, and David Cox. Triton: an intermediate

language and compiler for tiled neural network computations. In Proceedings of the
3rd ACM SIGPLAN International Workshop on Machine Learning and Programming
Languages, pages 10–19, 2019.

[23] Hongzheng Chen, Niansong Zhang, Shaojie Xiang, Zhichen Zeng, Mengjia Dai,

and Zhiru Zhang. Allo: A Programming Model for Composable Accelerator

Design. Proc. ACM Program. Lang., 8(PLDI), jun 2024.

[24] Debjit Pal, Yi-Hsiang Lai, Shaojie Xiang, Niansong Zhang, Hongzheng Chen,

Jeremy Casas, Pasquale Cocchini, Zhenkun Yang, Jin Yang, Louis-Noël Pouchet,

et al. Accelerator design with decoupled hardware customizations: benefits and

challenges. In Proceedings of the 59th ACM/IEEE Design Automation Conference,
pages 1351–1354, 2022.

[25] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,

Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Olek-

sandr Zinenko. MLIR: Scaling compiler infrastructure for domain specific com-

putation. In 2021 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), pages 2–14. IEEE, 2021.

[26] AMD. AIE vector dialect. https://xilinx.github.io/mlir-aie/AIEVecDialect.html.

Accessed: 2024-09-15.

[27] Louis-Noel Pouchet, Peng Zhang, Ponnuswamy Sadayappan, and Jason Cong.

Polyhedral-based data reuse optimization for configurable computing. In Pro-
ceedings of the ACM/SIGDA international symposium on Field programmable gate
arrays, pages 29–38, 2013.

[28] Shane Cook. CUDA programming: a developer’s guide to parallel computing with
GPUs. Newnes, 2012.

[29] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial architecture for

energy-efficient dataflow for convolutional neural networks. ACM SIGARCH
computer architecture news, 44(3):367–379, 2016.

[30] AMD. AI Engine Intrinsics User Guide (UG1078), 2024.

[31] AMD. Versal Adaptive SoC AI Engine Architecture Manual (AM009), 2024.

[32] Tuo Dai, Bizhao Shi, and Guojie Luo. WideSA: A High Array Utilization Mapping

Scheme for Uniform Recurrences on ACAP. In 2024 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 1–6. IEEE, 2024.

[33] AMD. Board evaluation and management Tool. https://xilinx-wiki.

atlassian.net/wiki/spaces/A/pages/2273738753/Versal+Evaluation+Board+-

+System+Controller+-+Update+6, 2024. Accessed: 2024-09-15.

[34] Nitish Srivastava, Hongbo Rong, Prithayan Barua, Guanyu Feng, Huanqi Cao,

Zhiru Zhang, David Albonesi, Vivek Sarkar,Wenguang Chen, Paul Petersen, Geoff

Lowney, Adam Herr, Christopher Hughes, Timothy Mattson, and Pradeep Dubey.

T2S-Tensor: Productively Generating High-Performance Spatial Hardware for

Dense Tensor Computations. In 2019 IEEE 27th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), pages 181–189,
2019.

[35] JieWang, Licheng Guo, and Jason Cong. AutoSA: A Polyhedral Compiler for High-

Performance Systolic Arrays on FPGA. In The 2021 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, FPGA ’21, page 93–104, New

York, NY, USA, 2021. Association for Computing Machinery.

[36] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Ama-

rasinghe. The tensor algebra compiler. 1(OOPSLA), October 2017.

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[38] Hanchen Ye, Cong Hao, Jianyi Cheng, Hyunmin Jeong, Jack Huang, Stephen

Neuendorffer, and Deming Chen. ScaleHLS: A New Scalable High-Level Synthesis

Framework on Multi-Level Intermediate Representation. In 2022 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA), pages
741–755, 2022.

[39] Hanchen Ye, Hyegang Jun, and Deming Chen. HIDA: A Hierarchical Dataflow

Compiler for High-Level Synthesis. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 1, ASPLOS ’24, page 215–230, New York, NY, USA, 2024. Associ-

ation for Computing Machinery.

[40] Yi-Hsiang Lai, Yuze Chi, Yuwei Hu, Jie Wang, Cody Hao Yu, Yuan Zhou, Jason

Cong, and Zhiru Zhang. HeteroCL: A Multi-Paradigm Programming Infrastruc-

ture for Software-Defined Reconfigurable Computing. In Proceedings of the 2019
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA
’19, page 242–251, New York, NY, USA, 2019. Association for Computing Machin-

ery.

[41] Shaojie Xiang, Yi-Hsiang Lai, Yuan Zhou, Hongzheng Chen, Niansong Zhang,

Debjit Pal, and Zhiru Zhang. HeteroFlow: An Accelerator Programming Model

with Decoupled Data Placement for Software-Defined FPGAs. In Proceedings of
the 2022 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
FPGA ’22, page 78–88, New York, NY, USA, 2022. Association for Computing

Machinery.

https://tenstorrent.com/vision/tenstorrent-scales-ai-performance
https://tenstorrent.com/vision/tenstorrent-scales-ai-performance
https://riallto.ai/
https://riallto.ai/
https://xilinx.github.io/mlir-aie/
https://xilinx.github.io/mlir-aie/
https://xilinx.github.io/mlir-air/AIRDialect.html
https://www.amd.com/en/developer/resources/ryzen-ai-software.html
https://www.amd.com/en/developer/resources/ryzen-ai-software.html
https://xilinx.github.io/mlir-aie/AIEVecDialect.html
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/2273738753/Versal+Evaluation+Board+-+System+Controller+-+Update+6
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/2273738753/Versal+Evaluation+Board+-+System+Controller+-+Update+6
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/2273738753/Versal+Evaluation+Board+-+System+Controller+-+Update+6

	Abstract
	1 Introduction
	2 Background and Related Work
	3 ARIES Framework Overview
	4 ARIES Programming Model
	4.1 Motivating Example: MLP with Tiled GEMM
	4.2 Tile-Based Task Abstraction
	4.3 Task- and Tile-Level Parallelism
	4.4 Intra-Tile Parallelism

	5 ARIES Representation and Optimizations
	5.1 ARIES Representation Overview
	5.2 ARIES Final IRs
	5.3 ARIES Optimizations and Automation

	6 Evaluation
	6.1 Single-Kernel Benchmarks
	6.2 Multi-Layer Applications

	7 Conclusion

