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Abstract—Deep neural network (DNN) models are increasingly
deployed in real-time, safety-critical systems such as autonomous
vehicles, driving the need for specialized AI accelerators. How-
ever, most existing accelerators support only non-preemptive
execution or limited preemptive scheduling at the coarse granu-
larity of DNN layers. This restriction leads to frequent priority
inversion due to the scarcity of preemption points, resulting in
unpredictable execution behavior and, ultimately, system failure.

To address these limitations and improve the real-time per-
formance of AI accelerators, we propose DERCA, a novel
accelerator architecture that supports fine-grained, intra-layer
flexible preemptive scheduling with cycle-level determinism.
DERCA incorporates an on-chip Earliest Deadline First (EDF)
scheduler to reduce both scheduling latency and variance,
along with a customized dataflow design that enables intra-
layer preemption points (PPs) while minimizing the overhead
associated with preemption. Leveraging the limited preemptive
task model, we perform a comprehensive predictability analysis
of DERCA, enabling formal schedulability analysis and optimized
placement of preemption points within the constraints of limited
preemptive scheduling. We implement DERCA on the AMD
ACAP VCK190 reconfigurable platform. Experimental results
show that DERCA outperforms state-of-the-art designs using
non-preemptive and layer-wise preemptive dataflows, with less
than 5% overhead in worst-case execution time (WCET) and
only 6% additional resource utilization. DERCA is open-sourced
on GitHub: https://github.com/arc-research-lab/DERCA

I. INTRODUCTION

Deep Neural Network (DNN) inference has become a cor-
nerstone of modern intelligent systems, powering applications
such as autonomous vehicles [1], drones [2], and robotics [3].
Many of these applications perform safety-critical tasks that
require real-time inference, and AI accelerators have emerged
as a key computing platform for efficiently executing DNN
workloads.

While dedicating an entire accelerator to serve a single DNN
application can meet stringent low-latency requirements, this
approach does not support concurrent execution or flexible
context switching, which are capabilities that are standard
on CPU cores. To improve resource utilization and system
responsiveness, it is increasingly common to share accelerators
among multiple applications with varying timing constraints.

(a) Non-preemptive scheduling
(b) Layer-wise preemptive scheduling
(c) Intra-layer flexible preemptive scheduling w/o PPP optimization (Ours)
(d) Intra-layer flexible preemptive scheduling w/t PPP optimization (Ours)
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Fig. 1: Non-Preemptive vs. Preemptive Scheduling.

For instance, with battery-powered, resource-constrained au-
tonomous vehicles, assigning one accelerator per task is
impractical. They rely on DNNs to detect other vehicles,
pedestrians, traffic signs, and signals in all directions, each
of them is a real-time safety-critical task.

Scheduling DNN inference on shared accelerators intro-
duces two major challenges. First, real-time tasks may differ in
their runtime importance and can have dynamically changing
priorities. Second, to meet real-time guarantees, all critical
tasks must be served concurrently on the accelerator. State-of-
the-art accelerators address concurrency by offering multiple
execution streams. However, due to the non-preemptive nature
of the accelerator, all tasks are scheduled as a First-In-First-
Out (FIFO) queue [4]–[8],. In this solution, a high-priority
task in the queue can be blocked by others and is prevented
from being executed. This phenomenon, known as priority
inversion, often results in unpredictable and unacceptable
performance in time-sensitive scenarios and leads to deadline
misses, leading to the failure of the whole system. Figure 1
shows a group of task sets with two tasks under different
randomly generated utilization distributions. Both tasks are
the same synthetic multilayer perceptron models (MLP) with
two layers, and the task set is scheduled using the earliest-
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deadline-first (EDF) method. The success rates under different
total utilization and worst-case execution times (WCET) of
different designs are reported. As shown in Figure 1 strategy
a, such non-preemptive scheduling easily fails when the total
utilization is high.

Inspired by the way CPUs provide real-time guarantees
through preemptive scheduling [9], [10], a natural extension is
to incorporate preemption into accelerator scheduling. How-
ever, existing accelerators typically lack support for flexi-
ble and fine-grained preemption. Some accelerators, such as
GPUs, only support preemption between kernels, which usu-
ally represent DNN layers, leveraging the limited preemption
opportunities that occur between layers of DNN models. Yet,
as illustrated in Figure 1 (denoted by strategy b), this approach
offers only a limited number of inter-layer preemption points.
Consequently, as system utilization increases, particularly in
the 80–90% range, the success rate of task scheduling signif-
icantly declines.

To address these challenges, we present DERCA, a novel ac-
celerator architecture that enables fine-grained, intra-layer pre-
emptive scheduling. DERCA incorporates customized memory
interfaces, on-chip buffers, a flexible dataflow controller, and
a kernel management module to support efficient preemp-
tion and resumption within DNN layers. With intra-layer
preemption points (PP), DERCA achieves higher scheduling
success rates than baseline non-preemptive and layer-wise
preemptive dataflows (strategies c and d in Figure 1). However,
scheduling and preemption incur non-trivial overhead (strategy
c), especially for short inference tasks.

To reduce preemption overhead, DERCA dynamically
chooses between two strategies: (1) discarding and recom-
puting intermediate data, avoiding DRAM communication
but adding compute cost; or (2) persisting data to DRAM
and reloading it, avoiding recomputation but incurring mem-
ory access. With performance modeling and schedulability
analysis, DERCA can analyze and decide the strategy with
less preemption overhead. The optimized strategies are then
performed via a flexible dataflow engine at runtime, balancing
performance and efficiency.

Note that unlike CPU-based schedulers that suffer from
cache-induced variability, DERCA implements a cycle-
accurate, finite state machine (FSM)-based EDF scheduler
on programmable logic (PL), ensuring bounded worst-case
latency per operation. DERCA’s deterministic cycle-level be-
havior enables analytical performance modeling. We adapt
existing limited preemptive scheduling theory [9], [11] to
support PP placement and schedulability analysis tailored to
DERCA. A heuristic algorithm is applied for preemption
points placement (PPP) optimization by removing redundant
points to minimize overhead [10]. Evaluation results demon-
strate that DERCA achieves stable and bounded end-to-end
latency under real-time constraints (i.e., strategy d in Fig. 1).
In summary, our contributions are as follows:
• Finite state machine-based scheduler: We implement

an EDF scheduler on programmable logic using an FSM
design, ensuring low-latency and cycle-level deterministic
scheduling with bounded overhead and minimal variance.

• Intra-layer preemptive accelerator design: We design

the DERCA accelerator with customized architecture and
dataflow to enable fine-grained preemption within a DNN
layer.

• Flexible dataflow for preemption: To optimize the cost
of preemption operation, we introduce a flexible dataflow
mechanism that dynamically selects between persisting or
recomputing intermediate data, leveraging the strengths of
both strategies.

• Performance modeling, predictability analysis, and
PPP optimization: We develop a performance model for
DERCA and adapt limited preemptive scheduling theory
to enable formal schedulability analysis. Additionally, we
propose a heuristic for joint PP placement and dataflow
strategy selection to reduce preemption overhead.

II. RELATED WORKS

Preemptive scheduling on accelerators has been explored
in a number of prior works, many of which target GPU
platforms. These works enable preemptive scheduling either
by partitioning the workloads into subtasks [12], [13] or by
implementing the context-switch mechanisms [14]. However,
the CPU and GPU accelerators apply cache-based architecture,
leading to lower determinism in execution times. On the
other hand, in the FPGA-based accelerators, memory access
is explicitly controlled, resulting in a deterministic latency.

Several frameworks have been proposed for the FPGA plat-
forms with real-time system-related techniques like preemp-
tion or deadline-aware scheduling, which usually target multi-
tenancy systems with quality-of-service (QoS) requirements.
[15]–[18] implement the scheduling algorithm but do not
support preemption, thus their executions of task sets are non-
preemptive. CD-MSA [19] proposes a deadline-aware schedul-
ing mechanism that uses the off-chip memory access phase
between layers, i.e., after data is written by one layer and read
by the next, as an opportunity for preemption. These works
only support layer-wise preemption and lack support for fine-
grained intra-layer preemption. Moreover, these frameworks
are not designed for real-time, safety-critical systems and thus
lack mechanisms to guarantee schedulability.

Some other works discuss schedulability analysis. [20]
implements a driver assistance system based on Vitis AI
framework [21]. However, the execution of workloads is non-
preemptive. ART [22], [23] implements an EDF scheduling
layer-wise limited preemption mechanism. MESC [24] im-
plements a context-switch mechanism based on the gemmini
accelerator [6]. MESC supports preemption in the granularity
of gemmini instructions, which is also layer-wise preemption.
These works do not customize the dataflow and are unable to
handle intermediate data during execution, making them lack
support for intra-layer preemption. In contrast, DERCA intro-
duces a dataflow-aware methodology that enables fine-grained
control over execution, allowing flexible and efficient intra-
layer preemption.

DERCA and the works mentioned above all target the
DNN workloads by implementing a unified accelerator on
the platforms. Different workloads are handled by supply-
ing distinct control signals to the accelerator. Alternatively,
partial reconfiguration can be used, in which each workload
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is mapped to a dedicated bitstream and the FPGA is re-
programmed accordingly whenever a new task is invoked.
[25]–[27] discuss the preemption overheads using partial re-
configuration. FRED [28], [29] proposes a framework for
real-time safety-critical systems on FPGA accelerators using
partial reconfiguration, and DART [30] optimizes the dynamic
partial reconfiguration partitioning and floorplanning problem.
The cost of partial reconfiguration in these approaches is
substantial, and they are unable to support task preemption
within the execution of a single bitstream.

III. DERCA HARDWARE ARCHITECTURE

We propose the DERCA hardware architecture to achieve
cycle-level deterministic control and accelerate operations in
limited preemptive systems. Such deterministic features are
enabled by the specifically designed heap-based scheduler
and the control flow, as well as the intra-layer preemptive
flexible dataflow accelerator design. These techniques are
customized especially for real-time, safety-critical systems.
In this section, we explain the overall DERCA architecture
and the microarchitectures of each module, including the
heap-based scheduler, kernel management module, flexible
dataflow controller, and accelerator design. We demonstrate
the execution procedure of the system based on the intra-layer
preemptive flexible dataflow. The performance model and
schedulability analysis of DERCA are explained in section IV.

A. Programming Model of Baseline Accelerator on Reconfig-
urable Platforms

We first discuss the programming model of a baseline
DNN accelerator, where different layers in the application will
be executed sequentially by reusing a single accelerator. An
illustration of the whole workflow is shown in Figure 3. In
the beginning, the DNN models to be executed will be entered
in the form of data flow graphs (DFG) (Figure 3 (a)). Since
there is only one accelerator processing one layer at a time,
an execution sequence (Figure 3 (b)) of each model will be
translated from the DFG with the dependency reserved. To
improve data locality, tiling is usually applied to break a large
computation into smaller chunks that fit into faster on-chip
memory (e.g. 1a, 1b, 1c in Figure 3 (b)). Due to varying layer
shapes, each layer is partitioned into a different number of
tiles. Consequently, the tasks will be scheduled onto the ac-
celerator for execution. This is achieved by sending the control
signals to the accelerator, which usually contains information
about DDR addresses and the loop boundary. The accelerators
will process the tiles iteratively following the schedule, and
the granularity of execution is determined by the architecture
and data flow of the accelerator. Without customized control
over intermediate data, the baseline accelerator treats an entire
DNN layer as the minimum granularity, processing all tiles
sequentially without support for fine-grained, tile-level control.
To bridge the gap between hardware acceleration and intra-
layer preemption support, we introduce a novel accelerator
architecture with a small overhead in Section III-B.

B. DERCA System Overview
The overview of DERCA is shown in Figure 2, which

includes the software stack and hardware accelerator. Begin-

ning with a given task set with several tasks together with
the platform constraints like on-chip resources, DERCA will
first generate the fine-grained execution pattern based on the
problem specifications of each layer in each task. Coupled with
specialized data flow accelerator design, DERCA is intra-layer
preemptive, i.e., a high-priority task can preempt the ongoing
one even if the accelerator is executing within a layer. For each
preemption point, since DERCA applies a flexible dataflow
engine, two strategies are supported for context switch: (1)
persist the on-chip intermediate data to DDR, and load it
back when resuming, and (2) drop the intermediate data, and
recompute it when resuming.

Based on the accelerator design and the position of the
preemption point, these two strategies represent a tradeoff in
preemption overheads. DERCA uses its performance model
to give cycle-level accurate estimation on the WCETs, PP
positions, and preemption overheads of both strategies before
runtime. Such accuracy can be achieved since the performance
model is directly derived from the design, different from
existing works like [20] where the model is simulation- or
profiling-based. With all the information from the input task
set and from the performance model, we conduct schedu-
lability analysis together with the PP placement algorithm
to get the final schedule with schedulability checked and
redundant PP removed. The system can only preempt a task
at a placed PP, and the region of workload between two
consecutive PPs can not be preempted, forming the non-
preemptive regions (NPRs). We make adjustments to this
algorithm so that it can be applied to realistic schedulers
and accelerators, where hardware overhead is ineliminable.
The decision of the dataflow strategy of each PP (persist
vs. recompute) is determined before the PP placement using
our proposed heuristic. The resulting schedule is also cycle-
level accurate and can guarantee the schedulability if the test
is passed. The schedule will then be used to build up the
DERCA hardware accelerator.

On the hardware side, to control the whole system,
DERCA does not rely on a CPU nor an operating system to run
the scheduling. Instead, an in-house scheduler is implemented
on the FPGA side as a finite-state machine so that it can avoid
costly DRAM and cache accesses, and functions independently
of any operating system. We design a heap-based scheduler
architecture on the FPGA to manage released jobs. This design
enables the scheduler to efficiently track job deadlines, sup-
porting EDF scheduling. The heap structure of the scheduler
ensures that every operation of the scheduler is predictable in
cycles, and the worst-case overhead is deterministic. With EDF
scheduling, each time the scheduler picks a non-preemptive
region (NPR)to execute, the kernel management mechanism
translates the (task, region) tuple to the metadata that
instructs the accelerator to execute. The metadata is tailored
for different task sets, contains the problem shapes (e.g.,
MKN in a matrix multiplication), addresses, the PP place-
ment information, and the strategy for preemption. This gives
DERCA flexibility to apply different strategies in different
PPs. The synchronization pattern between the scheduler and
the kernel management module is also customized to enable
scheduling and acceleration runs simultaneously to reduce
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overhead and avoid deadlocks.
For all of the programmable logic (PL) implementations,

we use high-level synthesis (HLS) for better productivity. We
propose a clear and reusable HLS coding style and provide
detailed explanations about how to generate deterministic
high-performance designs that allow other designers to adopt
and apply this approach as well.

C. Heap-based Scheduler

Given N tasks, the functionality of an EDF scheduler in
the limited preemptive scenario includes (1) recording the
jobs released by each task (2) picking the job with the
smallest deadline and issuing it to the accelerator, when a non-
preemptive region finishes (i.e., reaching a preemption point)

1 //DERCA heap operation (Vitis HLS)
2 void insert_job(job_t* heap, job_t new_job, int &tail){
3 #pragma HLS inline off
4 //insert the new job at the tail of the heap
5 heap[tail] = new_job;
6 //bottom-up maintenance: swap from tail to root
7 for(int c=tail-1; c>0; c=(c-1)/2){
8 #pragma HLS pipeline II=2
9 //compare and swap the current node with its parent

10 if(heap[c].ddl<heap[(c-1)/2].ddl){
11 swap(heap, heap[c],heap[(c-1)/2];}
12 else{
13 break;
14 }}
15 void dequeue_job(job_t* heap,int tail){
16 #pragma HLS inline off
17 //dequeue the root (job has finished)
18 heap[0] = heap[tail-1];
19 //top-down maintenance: swap from root to tail
20 for(int p=0;2*p+1<tail;){
21 #pragma HLS pipeline II=3
22 int smallest_node = p;
23 //compare and swap the current node with its children
24 if(heap[2*p+1].ddl<heap[p].ddl
25 && heap[2*p+1].ddl<heap[2*p+2].ddl){
26 smallest_node = 2*p+1;}
27 else if(heap[2*p+2].ddl<heap[p].ddl
28 && heap[2*p+2].ddl<heap[2*p+1].ddl){
29 smallest_node = 2*p+2;}
30 if(smallest_node!=p){
31 swap(heap, smallest_node, p);
32 p=smallest_node;}
33 else{
34 break;
35 }}

Fig. 5: Heap operation implementation in HLS.

(3) updating the job record accordingly to track the progress of
each job and cleaning the job when all its regions are finished.

In DERCA, the status of the released jobs is recorded in an
array. A tail register and two workers are added to maintain
the array as a minimum heap so that the first element of the
array will always have the smallest deadline after maintenance.
This also helps to reduce the hardware operation execution
time needed to find the most urgent job. For a task set of N,
the size of the heap can be fixed at N since under the limited
preemption scenario, two jobs of one single task exist simulta-
neously means at least one job violates the (implicit) deadline.
The interface channels, including task release, instruction, and
feedback, are hardware FIFO queues using shifting registers or
block RAMs, which are instantiated using HLS Streams [31]
in the program. We assign an independent channel for each
task’s release to avoid the case where the release of one task is
blocked by other unprocessed release events. Additionally, the
feedback and instruction channels are implemented to interact
with the accelerator, and a main FSM is used to control all
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1 //DERCA scheduler control logic (Vitis HLS)
2 job_t job_array[N];
3 #pragma HLS ARRAY_PARTITION variable=job_array complete
4 int cur_task, cur_region;
5 bool issue_flag = 1;
6 for(int i=0;;i++){//main loop
7 //Event: get feedback
8 if(!feedback.empty()){
9 feedback_buf = feedback.read();

10 issue_flag = true;
11 instr_idx++;
12 }
13 //Event: task releases
14 else if(!task0_release.empty()){
15 release_buf = task0_release.read();
16 insert_job(job_array,
17 {0,0,release_buf.ddl},tail);
18 tail++;
19 }
20 /*task 1,2,...,n release: omitted*/
21 //Event: issue instr
22 else if(issue_flag && tail>-1){
23 instr.write({job_array[0].task,job_array[0].region,
24 /*preempt=*/job_array[0].task!=cur_task &&

cur_region<region_num_array[cur_task]},
25 /*resume=*/job_array[0].task!=cur_task &&

cur_region!=0
26 /*last_t=*/cur_task,/*last_r=*/cur_region);
27 cur_task = job_array[0].task;
28 cur_region = job_array[0].region;
29 job_array[0].region++;
30 //all regions finished, dequeue job
31 if(job_array[0].region >

region_num_array[job_array[0].task]){
32 dequeue_job(job_array,tail);
33 tail--;
34 }
35 issue_flag = false;
36 }

Fig. 6: Scheduler control logic implementation in HLS.

the functionalities.

1) Heap Operations: A min-heap as an array requires the
following heap property: all the parent nodes (indexed as i)
are smaller than both their children nodes (indexed as 2*i+1
and 2*i+2). In DERCA, two workers are implemented using
HLS to maintain the heap in a top-down or bottom-up manner,
as shown in Figures 4 and 5. When a new job is released
(Figure 4(a), Figure 5 line 2-14), it is first inserted into the tail
of the heap, then the worker iterates from tail to root, swapping
the current node with its parent when it has a smaller deadline.
After scheduling the last region of one job (the job must be
at the root since it has the smallest deadline),this job will be
dequeued from the heap (Figure 4(b), Figure 5 line 15-35) the
worker moves the job at the tail of the heap to the root, then
iterates from root to tail, swapping the node with its smallest
children for heap property.

With an appropriate HLS coding style, the latency of heap
operations can be optimized and determined at the cycle level.
The pipeline pragma instructs the compiler to implement
the loop body in a pipelined fashion. With successful pipelin-
ing, the first iteration output of a for loop is produced after
depth cycles, and each subsequent iteration output is generated
every II (initiation interval) cycles. Both II and depth are
parameters specified by the user in HLS, ensuring that heap
operations are completely deterministic. If the compiler cannot
meet the specified targets, it still generates a design with larger,
specific values of II and depth. Consequently, the design
remains deterministic, and its behavior can be extracted from
the compilation reports.

2) Control Logic Implementation: Figure 6 demonstrates
the logic implemented in HLS to handle different events.
Several functionalities are integrated into this control logic.
Main Loop Structure: The main body of the control logic
is an unbounded loop. We also implement logic to safely
terminate the whole system for debugging and testing pur-
poses. In this loop, all logic is within different branches
of a single if statement. For the event of feedback from
accelerators and task releases, which are related to the input
FIFO, we check one FIFO in one if branch, and only perform
operations when the FIFO is not empty. This prevents the
HLS compiler from grouping the checking of different FIFOs
into one combinational logic, which can lead to the wrong
implementation of the FSM and deadlock at runtime. That is,
the FSM tries to read the feedback and issue the instruction
in the same state and checks both FIFOs simultaneously, as
a result, it has to get feedback before issuing an instruction.
Besides, the main loop can proceed when there is no feedback
or the issue flag is false. This means the scheduler can handle
the job release when the accelerator is still running, reducing
the critical path between receiving feedback to issuing the next
instruction.
Job Release Handling: When a job is released, an element
is sent to the FIFO specifying the deadline for this job. The
scheduler will add this job to the tail of the heap and perform
the bottom-up maintenance. When multiple jobs are released
in the same cycle, the scheduler will process them sequentially
in different main loop iterations. This ensures that before and
after each task release is processed, the heap property is kept.
Issue Instructions: An instruction will be issued and sent to
the FIFO if and only if (1) the issue_flag is set to 1 and
(2) the array is not empty. This means the scheduler will only
send a new instruction after getting feedback, which turns on
the issue_flag during runtime. The branch of receiving
feedback and issuing instructions takes the highest and lowest
priority in the loop, as a result, the scheduler will check all
job release channels before issuing the next instruction. This
prevents the case that a job with the smallest deadline is
released a few cycles before the feedback arrives, but is not
added to the heap, thus not executed due to the time cost
in scheduling. The issue_flag is set to true during the
initialization process before the main loop, meaning that the
scheduler will issue the first instruction when the first jobs are
released to start up the whole system.

When issuing an instruction, the scheduler simply picks the
job at the top of the heap, which always has the smallest
deadline. The instruction has several attributes: the task and
non-preemptive region of the most urgent job, and two
bool variables preempt and resume. These two variables
determine if this new region presents as a preemption of the
ongoing job or a resume of a job that is executed halfway.
Their values are obtained by comparing the recorded ongoing
job with the job at the top of the heap. The task and region
that is issued in the last instruction are also recorded and sent
via last_t and last_r.

After the instruction is sent to FIFO, the corresponding
region can be regarded as guaranteed to be finished when
receiving the next feedback. Thus, it is safe to update the heap
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immediately after issuing the instruction. For the jobs where
the issued region is not the last one, only the top node needs
to be changed to the next non-preemptive region. If the issued
region is the last one, the top node will be dequeued, and a
new job with the smallest deadline will be swapped to the root
using heap operations.

3) Latency Analysis: For a task set of N, the heap size is
also provisioned as N, constructing a dlog(N)e-level heap.
The loop boundary of the worst-case heap operations is
also dlog(N)e. The total latency of a loop in HLS is thus
II · (dlog(N)e − 1) + depth. Specifically, in DERCA the
implemented depth of top-down and bottom-up maintenance
are 4 and 5, respectively, and the II is set as 3 and 2. As
a result, the worst case of the heap operation is bound to
3dlog(N)e+1 and 2dlog(N)e+3 cycles. We use these values
as hyperparameters in our modeling and analysis, which can
be migrated to different designs with different N .

The latency of each branch in the main loop is also
deterministic. In the compiled FSM, checking the if statement
takes one state (denoted as state A), and each branch body
takes one state or several states in sequence. It is the design
that determines the latency of each state in the FSM, thus,
the latency of the whole scheduler is also bounded. Following
the setup in III-C1: (1) the feedback branch takes 2 cycles at
most; (2) each task release branch takes 2dlog(N)e+ 5 cycles
at most, assuming the heap operation reaches the worst case;
(3) the issue instruction branch takes 3dlog(N)e+ 4 cycles at
most, assuming the last region of a job is issued, and heap
operation reaches the worst.

D. Accelerator Microarchitecture

Figure 7(c) shows the dataflow structure of the accelerator,
which is managed by a flexible dataflow controller. The tiling
strategy is used for processing different layer sizes. For a
Matrix Multiplication of arbitrary size, it can be partitioned
into a set of tiles with uniform size TM × TK × TN. We
apply output stationary dataflow for the accelerator, so that the
subtiles along the reduced dimension (K) will be accumulated
in the on-chip buffer completely before being stored in the
off-chip memory. Pipelining is also applied, allowing the
accelerator to load/compute/store different tiles and overlap

the communication and computation latency. As a result, the
execution of a layer can be partitioned into a sequence of
iterations, as shown in Figure 7(d). To avoid the dependencies,
each iteration will load, compute, and store data of different
tiles, and the latency is bounded by the slowest operation.
For a matrix multiply of shape M × K × N, there will be
M/TM×K/TK×N/TN tiles and M/TM×K/TK×N/TN+2
iterations where extra 2 is for entering and draining pipeline.
In each iteration, the accelerator is able to load, compute, and
store different tiles simultaneously.
Latency for load and store from DDR: Different from the
designs on CPUs and GPUs, the address generator and AXI-
interface of DERCA is implemented in the FPGA, where de-
signers have full control of issuing DMA instructions. DRAM
bandwidth contention can impact predictability when CPUs
and accelerators contend for DRAM, and the scheduler is
implemented on CPUs. DERCA avoids this by implementing
scheduling on the FPGA accelerator. The CPU remains idle
during runtime and does not interfere with DRAM access.
As a result, the latency of loading and storing the input and
output buffers is bounded. We discuss the performance model
for DDR access in Section IV-C.
Latency for computation: The cycle used in computation
varies due to different PE array designs. However, for a
certain design, the cycle number is fixed. DERCA uses the
performance model of the PE array from the original design.

E. Kernel Management Module and Metadata

As shown in Figure 7(a), the kernel management mod-
ule receives the instruction from the scheduler specifying a
non-preemptive region and then controls the accelerator to
execute this region. All information for all non-preemptive
regions within the given task is stored on a static on-chip
metadata table, and a 2-D indexing table is implemented
to index the start of each non-preemptive region. One non-
preemptive region can contain different layers with different
shapes and addresses, they are stored in consecutive entries
in the metadata table, using a is_preemptive bit to
suggest the current non-preemptive region after finishing this
segment. When the kernel management module receives an
instruction, it will locate the first entry of the non-preemptive
region using the index table, then sequentially execute the
entries in the metadata table until reaching the end (i.e.,
is_preemptive==1). After finishing the last entry, a 1-
bit feedback will be sent to the scheduler. The accelerator
will wait for the scheduler to send the next instruction, and
preemption happens if the new instruction contains a region
of a different task, while the ongoing task has not finished yet.

The metadata is also able to handle a “partial” layer
so that we can place the preemption point within a layer.
In DERCA we implement this functionality by storing the
start and stop iterations of this non-preemptive region in the
metadata table. This is based on the observation that, once
the shape of a layer is given, the number of its partitioned
tiles is determined. For every iteration, the tiles to be loaded,
computed on, and stored, the choice of ping-pong buffer, and
the corresponding load/store addresses are fully determined by
the iteration index.

6



11

10

12

11

13

12

…91 2

1

3

2

8

7

Output 
Tile

5

4

6

5

7

6

4

3 8

10

9

Store

Compute

Load

* =

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

Output Tile: Accumulation of Tile 1 ~ 8

MatA MatB MatC

Accelerator 
Timeline

Fig. 8: Execution pattern without preemption happening.

Latency Analysis: After receiving instruction in the 1st cycle,
it takes only one cycle to find the corresponding metadata, and
the kernel is launched at the 3rd cycle. Then, each time new
metadata is needed when running a non-preemptive region,
it takes one additional cycle for metadata. After the region
finishes, the feedback will be sent in the second cycle.

F. Intra-layer Preemptive Flexible Dataflow

For real-time and safety-critical applications, DERCA pro-
vides a tailored dataflow architecture, supporting intra-layer
preemption with preemption points placed between two con-
secutive tiles. For each preemption point, DERCA can either
persist intermediate results to DDR for later use or discard
the intermediate results and recompute them upon resuming,
exploring the trade-off between storage cost and recomputation
overhead. Based on our cycle-accurate model (Section IV),
DERCA selects an optimized strategy automatically at the
compilation stage and records the choices in a metadata table,
which the accelerator consults at runtime when preemption
happens.

We demonstrate how the customized flexible dataflow ar-
chitecture works during preemption and resuming via the
following cases:

1) Execution Procedure without Preemption: Figure 8
shows an execution scheduling without preemption. For matrix
multiplication, we apply tiling with an output stationary loop
permutation. For example, tiles 1 ∼ 8 MatA and MatB are
loaded to generate partial results, accumulated in the same
output buffer. The accelerator executes in iterations, with
each iteration it can load, compute, and store a tile. After
computations for all 8 tiles (iterations 1 ∼ 9), the final results
are stored to DDR in the 10th iteration. The accelerator can
also load tile 10 and compute tile 9 in this iteration while
storing the final results.

2) Dataflow Using Recompute Strategy: As shown in Fig-
ure 9 (a), during the execution of 4th iteration in the current
task, a task of a higher priority is released, thus preemption
happens. At this time point, the on-chip intermediate data
contains the input data of tile 4 in the input buffer, and the
accumulated partial results computed by tiles 1 ∼ 3 in the
output buffer. With the recompute strategy shown in As shown
in Figure 9 (b), the data in both the input and output buffers is
discarded, usually with no latency. In resuming, the accelerator
needs to go back to the beginning tile corresponding to this
output tile and recompute the discarded partial results (tiles 1
∼ 3 in this case), which introduces a latency of computation.
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Fig. 9: Execution patterns with preemption using recompute
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Fig. 10: Illustration for the trade-off between recompute and persist
strategies in intra-layer preemption. (a) Task 1 is inserted with PPs,
allowing intra-layer preemption, while Task 2 is a separate task
with higher priority; (b) In preemption case 1, DERCA selects
the recompute strategy because the execution time of storing and
loading intermediate data (1a) exceeds that of recomputing the
intermediate data; (c) In preemption case 2, where DERCA selects
the persist strategy because the execution time of storing and loading
intermediate data (1a−c) is smaller than that of recomputing the
intermediate data. DERCA flexible dataflow controller chooses either
persist or recompute strategy to optimize the cost in terms of the
execution time of the preemption operation.

3) Dataflow Using Persist Strategy: Figure 9 (c) shows
the case using the recompute strategy. When the preemption
happens, the accelerator stores the output buffer to DDR
and discards the input buffer, introducing a longer latency
of DDR communications. When resuming, the accelerator
needs to reload the partial results, also introducing DDR
communication latency.

4) Flexible Dataflow: Figure 10 illustrates how
DERCA optimizes the execution by exploring the tradeoffs
between the recompute and the persist strategies. Figure 10
(a) shows the workloads and preemption points inserted at
compilation. As shown in Figure 10 (b), if the preemption
arrives earlier, i.e., after computing tile 1a, the overhead
of recomputing tile 1a is smaller than persisting the partial
results for later use. In contrast, Figure 10 (c) prefers the
persist strategy, where the preemption happens after tile
1c. The recompute strategy needs to compute 2 more tiles,
whereas the persist strategy still has the same amount of DDR
communication since the partial results are accumulated. As
a result, the latency in the persist strategy is less than the
recompute in this case. Besides the location of the PPs as
shown above, other factors like accelerator tile size, on-chip
memory capacity, and off-chip bandwidth also affect the
tradeoff between the recompute and persist strategies.

To enable the flexible dataflow described above,
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DERCA first enables all possible PPs in the task at
compilation. For each PP, DERCA uses the performance
model to predict the latency incurred by recompute and persist
strategies separately, then finds the better strategy using our
proposed heuristic (Section IV-E). The decisions will then
be embedded into the strategy entry in the metadata
table (Figure 7 (a)) and stored on-chip. During runtime, the
kernel management module decodes the instructions from
the scheduler using this table and tells the flexible dataflow
controller which strategies should be applied accordingly.

IV. DERCA PERFORMANCE MODEL AND
SCHEDULABILITY ANALYSIS

According to our system design, it is essential to deter-
mine task preemption points through formal schedulability
analysis. To this end, we first formalize the real-time system
implemented by DERCA using a limited preemptive task
model [9]–[11]. We begin by defining the key parameters that
characterize the system’s task structure. Next, we present a
cycle-accurate performance model that captures the underlying
accelerator design and incorporates WCET analysis. Finally,
we demonstrate how this performance model is integrated into
the schedulability analysis algorithm to guarantee that all task
deadlines are met prior to runtime.

A. Task Model

Following the setup in [10], we define the task model under
a limited-preemptive scheduling scenario. The system executes
a task set τ , consisting of n periodic tasks. Each task is
represented as τi = (ei, pi, di), where 1 ≤ i ≤ n. Here, ei
denotes the WCET, pi is the task period, i.e., the minimum
time between successive releases of τi, and di is the relative
deadline of each job. We assume an implicit-deadline task
model, where the deadline equals the period, i.e., di = pi,
ensuring that each job must complete before the next one is
released.

Each task τi consists of multiple non-preemptive regions
(NPRs), denoted as δi,j = (bi,j , ξi,j). Here, bi,j represents
the execution time of the j-th non-preemptive region, and ξi,j
denotes the preemption overhead incurred before entering this
region, i.e., the cost of resuming execution if a preemption
occurred after the previous region. The WCET of task τi is
thus given by the sum of the execution times and associated
overheads of all its NPRs: ei =

∑
j(bi,j + ξi,j)

Tasks are sorted in non-decreasing order of their periods
(or equivalently, deadlines due to the implicit deadline model),
such that di ≤ dj if and only if i ≤ j. Under this convention,
a task τi may preempt a lower-priority task τj only if i < j.

To schedule the task set on the accelerator, we adopt the
earliest-deadline-first (EDF) scheduling policy. In an ideal
EDF scheduler, a job becomes ready immediately upon its
release and remains so until it begins execution. At each
preemption point, i.e., when a task reaches a schedulable
boundary, the scheduler selects the ready job with the earliest
deadline and dispatches the next non-preemptive region of that
job immediately.

Fig. 11: Timeline of two consecutive jobs.
B. Effective Periods of Tasks in DERCA

In a theoretical EDF scheduler, a job is considered ready
immediately upon its release. However, in a practical imple-
mentation, there is a non-negligible latency between the time
a job is released and when it becomes ready for execution.
This delay, introduced by hardware and scheduling overheads,
effectively reduces the release period of tasks.

Figure 11 illustrates the release of two consecutive jobs of
the same task. While the intended release interval between
these jobs is exactly pi, the actual delay between a job’s release
and its readiness, which is caused by internal state transitions,
heap management operations, and contention with other job
releases, introduces a latency denoted as ∆p. When the second
job experiences a shorter delay (∆p′′ < ∆p′), the effective
release interval p′i becomes shorter than pi.

We define the release time of a job as the cycle in which
it enters the task release FIFO, and the ready time as the first
cycle when the job is added to the scheduling heap after all
required heap operations. To characterize the worst-case delay,
∆pworst, we conservatively assume that all potential scheduler
branches are exercised at least once during the release-to-ready
transition. In the worst-case scenario, the maximum possible
latency due to heap operations can be denoted by the following
equation.

∆pworst = (2N + 3)dlog(N)e+ 5N + 6 cycles (1)
where N is denoted as the number of tasks in the task set.

The effective interval between two consecutive jobs can
be conservatively bounded by assuming that the first job
experiences the worst-case delay ∆pworst, while the second job
incurs no delay. We use this reduced interval (i.e., p′i) as the
task’s effective release period in the schedulability analysis.

p′i = pi −∆pworst (2)
C. Model of Execution Time

We define each cycle in which the scheduler issues an
instruction as a preemption point. According to the execution
procedure of the DERCA accelerator described in Section III,
the system performs a sequence of operations between two
consecutive preemption points, assuming no preemption or
resume events occur: (i) The kernel management module
retrieves the instruction, accesses the corresponding metadata,
and initiates the accelerator. (ii) The accelerator executes the
Non-Preemptive Region (NPR). (iii) Upon completion, the
kernel management module provides execution feedback. (iv)
The scheduler then conducts a scheduling decision and issues
the next instruction.

Subsequently, the WCET of an NPR can be represented as:

bi,j = bA
i,j + bM

i,j + bS
i,j (3)

8



which represents the latency spent in execution, kernel man-
agement, and scheduling operations, respectively. We provide
the modeling and analysis of each item as follows:

1) Scheduling and Preemption Operation: The latency of
the scheduling and preemption occurs in the scheduler and
is the latency between receiving feedback and issuing the
next instruction. This latency varies since that according to
Figure 6, after receiving an instruction, the scheduler will
check the release of all tasks and add to the heap if any. As
a worst-case estimation, we also assume that all branches of
the scheduler happen once, then we have:

bS
i,j = (2N + 3)dlog(N)e+ 3N + 4 cycles (4)

2) Kernel Management: Following the timing analysis in
Section III and considering the latency in FIFO, the kernel
management will have a fixed latency of:

bM
i,j = 6 cycles (5)

3) Performance Model on Accelerator: As described in
Section III, the total execution time of one non-preemptive
region can be decomposed into the sum of accelerator itera-
tions within this region:

bA
i,j =

∑
k

Iki,j (6)

For each iteration, its execution time is the maximum latency
of load, compute, and store operations due to pipelining:

I = MAX(eload, ecomp, estore) (7)

For ecomp, we derive the latency from the original PE array
design. The latency is related to the computation amount of the
tile size, the number of processing elements, and the internal
data flow within the PE array:

ecomp = F (TM, TK, TN, PE) (8)

The latency of load and store is related to the DDR access.
We follow the model of [32], [33]:

eload = Cinit +
(TM ∗ TK + TK ∗ TN) ∗ BPE

BWin
(9)

estore = Cinit +
TM ∗ TN ∗ BPE

BWout
(10)

where BPE represents the number of bytes per element. BWin
and BWout are the communication capabilities of the input
and output memory interface, which are related to the number
of AXI ports, datawidth of each port, burst length of each
port, and the number of consecutive accesses. All of these
factors are specified in the accelerator design, thus an accurate
Bandwidth can be modeled. Cinit is the initialization overhead
of each memory access, which is an attribute of the DDR
hardware for the platform, we use Cinit = 300 cycles in
this work. The eload, ecomp, estore are the same for all iterations
running on the same accelerator. In particular, if an iteration
does not perform some operations, the corresponding latency
is set to 0.

D. Model of Preemption Overhead

As demonstrated in Section III, the preemption overhead
related to one preemption point is determined by the strategy
of recompute or persist. In this work, we denote that for each
NPR (δi,j), we use a binary variable (di,j) to encode the design
choice of the preemption point after δi,j , where di,j = 0
represents that recompute is used, and di,j = 1 represents
persist strategy.

When a task τi preempts τk after δk,j , a preemption over-
head ξpre

k,j is going to be paid, then when τk resumes, a resume
overhead ξres

k,j is going to be paid before executing δk,j+1.
Following the timing analysis in Section III, when using
the recompute strategy, the preemption overhead is cleaning
the output buffer, and the resume overhead is recomputing
the cleaned iterations. When using the persist strategy, the
preemption overhead is storing the output buffer, and the
resume overhead is loading the stored output buffer, together
with loading one input buffer:

ξ
pre
i,j = { eclean, if di,j = 0

estore, if di,j = 1
(11)

ξres
i,j = { I×MAX(eload, ecomp), if di,j = 0

estore + eload, if di,j = 1
(12)

where eclean stands for the latency for cleaning the out-
put buffer during preemption, which is usually 0. I =(

cur I− K
TK ·

⌊
cur I−2
K/TK

⌋
− 1
)

, which is the number of itera-
tions that needs to be recomputed, and cur I stands for the
current iteration index of the preemption point, which is related
to the actual workload.

We then discuss how to bound the preemption overhead
ξi,j according to ξ

pre
i,j and ξres

i,j . Note that ξi,j stands for the
preemption overhead that is before the NPR δi,j . Suppose that
task τi preempts τk after δk,j , ξi,1 accounts for the preemption
overhead ξpre

k,j , while ξk,j+1 accounts for the resume overhead
ξres
k,j .

For the first region of task τi, it can only preempt other
tasks with a longer period, thus its preemption overhead will
be the maximum of all ξpre

k,j that k > i:

ξi,1 = MAX(ξ
pre
k,j ), for all k > i (13)

The rest of the regions in each task can only be resumed.
Though multiple tasks can preempt before a region, the resume
overheads are only related to the PP before this region:

ξi,j = ξres
i,j , for j > 1 (14)

E. Dataflow Strategy with PPP Optimization

DERCA performs schedulability analysis and PP placement
following the setup in [9]–[11], using a task model where all
PPs are initially enabled, as previously described. However,
as shown in Equations 11 and 13, the preemption overhead
for a task depends on the design strategies applied to PPs in
other tasks. Consequently, all PP strategies must be determined
before executing the placement algorithm. This leads to a
prohibitively large design space: for a task set with n tasks and
k PPs per task, there are 2n·k possible design combinations,
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TABLE I: Hardware design parameters.

Paramter Description Value
TM tile size 1536
TK tile size 128
TN tile size 1024
#PE PE number 384
Eff. PE efficiency 0.8
BPE #bytes per element 4

C init initialization overhead of DDR 300
BW in input bandwidth (byte/cycle) 84

BW out output bandwidth (byte/cycle) 30
BW persist persist bandwidth (byte/cycle) 30
BW resume resume bandwidth (byte/cycle) 21

N max #tasks in heap 15

which is an infeasible number to evaluate exhaustively, es-
pecially considering that intra-layer preemptive dataflows can
involve hundreds of PPs in a single DNN.

To manage this complexity, we propose a heuristic ap-
proach. From Equation 11, for any i, j, ξpre

i,j takes one of
two possible values, with estore being the larger. Specifically,
ξi,1 = TM ·TN/P only if every dk,j for k > i is set to 0 (i.e.,
the recompute strategy is used for all such PPs). Otherwise,
ξi,1 = estore. In other words, ξi,1 equals TM · TN/P only
when all later tasks exclusively adopt the recompute strategy
across all PPs. Based on this insight, we evaluate two heuristic
PP placement strategies: (i) Recompute-dominant strategy:
Assume all PPs use the recompute strategy (i.e., all dk,j = 0),
yielding ξi,1 = TM · TN/P, with other ξi,j (j > 1) derived
directly from dk,j ; (ii) Persist-inclusive strategy: Assume at
least one PP uses the persist strategy, and conservatively set
ξi,1 = estore. This is safe since ξi,1 ≤ estore. Then, based on
Equation 14, the values of ξi,j for j > 1 depend only on the
immediate preceding PP. Thus, ξi,j(j > 1) is determined by
ξres
i,j−1 di,j−1:

di,j = { 0, if I×MAX(eload, ecomp) < estore + eload
1, otherwise (15)

Since the heuristic only requires comparing two strategies
for each PP, and conducting the schedulability analysis and
PPP optimization once to generate the final design, its com-
plexity is thus O(1).

V. EVALUATION

A. Experiment Setup

We implement the DERCA system on the AMD Versal
VCK 190 platform [34] to evaluate the effectiveness of
DERCA. We choose CHARM [4] as the baseline accelerator
with the PE array located on the AI engine of the platform.
We implement a customized data buffer, memory interface,
and kernel management module in the PL part to enable
the intra-layer preemptive flexible dataflow. The scheduler
is also implemented in the PL part. A job release module
is added to replay the workload traces, and a probe using
techniques in [35] is implemented to record the cycles. The
design parameters used in the implementation are shown in
Table I. The design on PL and AIE is compiled by Vitis 2021.1
and runs at 230 MHz and 1 GHz. The AMD XRT library is
used for creating the host program running on the CPU.

TABLE II: On-board measured latency of all accelerator
operations within the system. The measurement matches the
hardware design specifications. The variance is small and can
be capped by the analytical performance model.

Operation Load Compute Store Recompute Persist
Preemption

Persist
Resume

Avg
Latency 15819 23357 204891 16385 204891 293376

Max
Latency 15969 23359 204924 16388 204916 293512

Perf
Model 16092 23362 210015 16400 210015 299893

Two synthetic workloads and five real-world workloads are
evaluated. To clearly demonstrate the difference between dif-
ferent designs, we choose two multi-layer perceptrons (MLPs)
benchmarks with a small and large hidden dimension size:
each MLP has two layers of matrix multiplications of the
same shape. The layer shape of MLP 1 and MLP 2 is set
to 1024× 8192× 1024 and 2048× 128× 2048, respectively.
For the real-world workloads, we evaluate transformer and
MLP-based models, including DeiT-T [36], BERT-tiny [37],
BERT-mini [37], PointNet [38], and MLP-Mixer [39].

B. Effectiveness of Performance Model
Table II demonstrates the on-board profiling results of dif-

ferent operations in the implemented system, which includes
the latency of load, compute, store operations in execution,
the preemption (cleaning output buffer) in the recompute
phase, and the preemption and resume overhead in the persist
phase. The cost of recomputing is combined with the load
and compute operations as introduced in Equation 12. These
latencies are profiled using the probe when running different
applications. Besides, the proposed performance model pro-
vides a tight upper bound on the profiled latencies, which
gives estimations 0.76%, 0.012%, 0.24%, 0.073%, 0.24%, and
0.21% higher than the profiled maximum value, respectively.

For the scheduling operation and kernel management op-
eration, we use the VCS [40] to simulate the HDL codes
generated by HLS to get the cycle number and compare that to
the on-board execution cycle read from the hardware probes.
Both on-board measured latency and simulated latency match
our design specifications described in Section III-C.

C. Effectiveness of Intra-layer Preemptive Dataflow
1) Experiment Setup: To comprehensively compare the

differences of different dataflow designs, we generate a large
scale of task sets and test if they are schedulable using different
dataflows, and report the success rate. For a given group of
workloads where the number of tasks and the shape of each
task are known, we first generate the utilization of each task
based on the UUniFast Algorithm [41]. The execution time of
each task is obtained by the proposed performance model, and
then the period of each task is computed using the execution
time over utilization. Finally, designs with different dataflows
will be tested on this task set with all designs scheduled by the
EDF algorithm. At least 100 random utilizations are generated
for each design at each total utilization.

A cycle-accurate simulator is implemented to conduct this
large-scale exploration based on the performance model and
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(a) Success rate on MLP1 workload.
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(b) Success rate on MLP2 workload.
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(c) Success rate on real-world workloads.

Fig. 12: Success rate of different preemption strategies on various workloads.

the collected on-board profiling data of each task set. Besides,
to speed up the process, we conduct a schedulability test for
these design points. One design is regarded as successful if it
passes the test. If a design fails the test, we then conduct a
simulation to determine whether it is scheduleable.

2) Success Rate on Synthetic Workloads: Figure 12a
and 12b show the success rate on task sets on synthetic
workloads, where the task set in them is composed of two
MLP1 workloads and two MLP2 workloads, respectively.
Eight designs are evaluated: the non-preemptive dataflow
(NP) and the layer-wise preemptive dataflow (LW) serve as
the baseline. For the intra-layer preemptive dataflow, three
strategies are provided: recompute only (IR), persist only (IP),
and flexible dataflow (IF). Each intra-layer dataflow is tested
before (w/o PPP) and after (w/t PPP) the PP placement opti-
mization. The baseline CHARM accelerator does not support
preemption. Thus, it is non-preemptive. We implement the LW
dataflow by customizing the host program with the FPGA part
unchanged, and all the intra-layer preemptive dataflows by
applying DERCA micro-architectures. For all the evaluated
dataflows, the computation capabilities are the same since the
PE array architecture remains unchanged.

Both figures show that the intra-layer dataflows after PP
placement are consistently better than the baseline non-
preemptive dataflow and the layer-wise preemptive dataflow,
proving the effectiveness of the intra-layer preemption. Be-
sides, in Figure 12b and 12c, the flexible dataflow can
maintain a success rate higher than 90% even in a high total
utilization of 95%.

Figure 12a shows the case where the workloads have a large
reduced dimension (K) size. In this case, there will be only
one output piece in the matrix multiplication, meaning that if
recomputing is used in one PP, it will recompute all the layers
when resuming. As a result, the recompute dataflow, both with
and without PP placement, will have a similar performance to
the layer-wise preemptive dataflow. In fact, the large reduced
dimension size will lean toward the persist strategy, since the
latency of storing and loading back the output buffer will
be smaller than computing a large amount of tiles in the
K dimension. As a result, the persist dataflow has a better
performance (IP w/t better than IR w/t, IP w/o better than
IR w/o in Figure 12a). Figure 12b demonstrates another case
in which the reduced dimension is small. In this case, the
cost of recomputing will be smaller than persisting. Therefore,
the recompute-only dataflow outperforms persist-only (IR w/t
better than IP w/t, IR w/o overlaps with IF w/o, both better
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Fig. 13: Normalized WCETs of synthetic MLP model.

than IP w/o in Figure 12b).
The flexible dataflow takes advantage of both recompute

and persist strategies. For the intra-layer preemptive dataflow
designs without PP placement, the flexible dataflow will be
better than the recompute-only and persist-only designs (Fig-
ure 12a), or at least have the same success rate as the one
with the higher performance (IR w/o overlaps with IF w/o
in Figure 12b). When PP placement optimization is enabled,
the flexible dataflow has a higher rate than persist-only in
Figure 12a and the same as recompute-only in Figure 12b,
forming the best overall performance.

3) Success Rate on Real-world Workloads: Figure 12c
demonstrates the successful rates of task sets on real-world
workloads. Here, the number of tasks in one task set is set to 2,
and the model is selected from the five real-world workloads.
Here, layer-wise preemption performs better than the synthetic
workload. This is because the real-world workloads have more
layers, enabling more inter-layer preemption points. As a re-
sult, the layer-wise-preemptive can leverage these preemption
points. Still, as the intra-layer preemptive dataflow enables
more preemption points than the layer-wise dataflow, the intra-
layer-preemptive flexible design after PP placement shows the
best among all, especially at the high total utilization when
larger than 90%.

4) Comparison of WCET of Different Preemption Strate-
gies.: Figure 13 shows the normalized WCETs of a synthetic
workload having two layers with the shape of 6144 × 512 ×
4096, in which the M,K,N dimensions are all partitioned into
four tiles. To measure the WCETs under each utilization, we
set task sets with three tasks of the model with a random
distribution of utilization. The WCETs are averaged through
different task sets with the same total utilization. The WCETs
of the non-preemptive, layer-wise-preemptive, and three intra-
layer preemptive dataflows after PP placement are shown
in Figure 13. For the two baseline designs, the normalized
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TABLE III: Resource utilization of different modules within DERCA system.

LUT REG BRAM URAM DSP AIE
Scheduler 9177 (1.02%) 8132 (0.45%) 1 (0.10%) 0 (0%) 0 (0%) 0 (0%)

Job Release 15135 (1.68%) 32646 (1.81%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Memory
Interface 14517 (1.61%) 23218 (1.29) 0 (0%) 0 (0%) 37 (1.88%) 0 (0%)

Kernel
Management 11898 (1.32%) 25053 (1.39%) 6.5 (0.67%) 0 (0%) 1 (0.05%) 0 (0%)

Accelerator 105060 (11.68%) 112324 (6.24%) 787.5 (81.44%) 384 (82.84%) 102 (5.18%) 384 (96.00%)
Total 155787 (17.31%) 201373 (11.19%) 795 (82.21%) 384 (82.94%) 140 (7.11%) 384 (96.00%)

PE Array

Scheduler

Accelerator

Memory
Interface

Kernel
Management

Module

Job
Release

Fig. 14: System layout.

WCETs are always the same as the execution length since
there is no preemption overhead, however, the limited number
of preemption points makes them miss the deadline more
easily, especially when the total utilization is high. For the
intra-layer preemptive designs, the overhead is also zero when
utilization is low, since the design can leverage the inter-layer
PPs. As the utilization increases, more PPs are enabled to
ensure meeting the deadline, bringing preemption overheads.
The overhead after PP placement is small compared with the
total execution length, with at most 4.3% of the execution time
in this case for the flexible dataflow. Regarding the overhead
of intra-layer preemptive designs before PP placement, since
there are a large number of preemption points, the total
overhead of the recompute-only, persist-only, and flexible
dataflows is 4.03×,1.29×, and 4.03× the execution length.

D. Resource Utilization
The layout of DERCA implementation on the VCK 190

board is shown in Figure 14, where the modules of job
release, scheduler, kernel management, memory interface, and
accelerator are highlighted. The resource utilization of each
module is shown in Table III. The overhead brought by
DERCA is small. To enable the low-latency deterministic
scheduling and the intra-layer preemptive flexible dataflow
design, the additional resource usage is 5.63% LUT, 4.94%
registers, 0.77% BRAM, and 1.93% DSP.
Discussion.
Scalability on total number of regions in the system. As
shown in Figure 7 (a), each non-preemptive region adds 24

bytes of on-chip RAM for metadata. For example, with the
number of regions at the scale of over 100 thousand, the
resources for the accelerator are impacted by 5%. However,
our performance model is general and remains valid at any
scale, and schedulability is still guaranteed for passing designs.
Comparison between the schedulability analysis and simu-
lation results. Our task modeling and the deployed algorithm
ensure the safety of the schedulability analysis; that is, if a task
set passes the analysis, it is guaranteed to meet the deadline at
runtime. In our experiment, we observe that for the baseline
strategy and the intra-layer preemptive strategy with PPP, the
success rates of analysis and simulation match well, with <5%
tasks passing the simulation but not the analysis when total uti-
lization >80%. For the intra-layer preemptive strategy without
PPP, the success rate of analysis is much lower than simulation
due to the preemption overhead brought by the large amount
of intra-layer PPs without optimization. This highlights the
importance of the PPP optimization implemented in DERCA.
Extending DERCA to multiple accelerators. Extending
DERCA to a multi-accelerator system (“multi-DERCA”) en-
tails more challenges. It introduces a large design space for
workload/resource partitioning, accelerator-specific dataflows,
and mapping strategies. Hardware challenges include circuit
design, like floorplanning, frequency scaling, and DDR band-
width contention. Software-wise, more scheduling methods
and schedulability analysis are needed for heterogeneous
multi-accelerator scenarios.

VI. CONCLUSION

In this paper, we propose DERCA, a deterministic cycle-
level accurate accelerator to address the limited preemption
capabilities of the specialized AI accelerators and enhance
the real-time performance. DERCA enables fine-grained, intra-
layer flexible preemptive scheduling with cycle-level determin-
ism by adopting an on-chip EDF scheduler, which minimizes
scheduling latency and variance, along with a customized
dataflow architecture that supports intra-layer preemption with
low overhead. We conduct a comprehensive predictability
analysis of DERCA, facilitating formal schedulability verifi-
cation and preemption point placement optimizations under
limited preemptive scheduling constraints.
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Shao, “MoCA: Memory-centric, adaptive execution for multi-tenant
deep neural networks,” in 2023 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 2023, pp. 828–
841.

[16] S. Zeng, G. Dai, N. Zhang, X. Yang, H. Zhang, Z. Zhu, H. Yang, and
Y. Wang, “Serving multi-DNN workloads on FPGAs: A coordinated
architecture, scheduling, and mapping perspective,” IEEE Transactions
on Computers, vol. 72, no. 5, pp. 1314–1328, 2022.

[17] C. Gao, Y. Wang, C. Liu, M. Wang, W. Chen, Y. Han, and L. Zhang,
“Layer-Puzzle: Allocating and Scheduling Multi-task on Multi-core
NPUs by Using Layer Heterogeneity,” in 2023 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, 2023, pp. 1–6.

[18] Y. H. Oh, S. Kim, Y. Jin, S. Son, J. Bae, J. Lee, Y. Park, D. U. Kim,
T. J. Ham, and J. W. Lee, “Layerweaver: Maximizing resource utilization
of neural processing units via layer-wise scheduling,” in 2021 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 2021, pp. 584–597.

[19] C. Wang, Y. Bai, and D. Sun, “CD-MSA: cooperative and deadline-
aware scheduling for efficient multi-tenancy on DNN accelerators,”
IEEE Transactions on Parallel and Distributed Systems, vol. 34, no. 7,
pp. 2091–2106, 2023.

[20] F. Restuccia and A. Biondi, “Time-predictable acceleration of deep
neural networks on fpga soc platforms,” in 2021 IEEE Real-Time
Systems Symposium (RTSS). IEEE, 2021, pp. 441–454.

[21] AMD, “AMD VitisTM AI Software.” [Online]. Available: https:
//www.amd.com/en/products/software/vitis-ai.html

[22] S. Ji, X. Chen, W. Zhang, Z. Yang, J. Zhuang, S. Schultz, Y. Song,
J. Hu, A. K. Jones, Z. Dong et al., “Towards Accelerator Customization
in Real-time Safety-critical Systems,” in Proceedings of the 2025
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, 2025, pp. 181–181.

[23] S. Ji, X. Chen, J. Zhuang, W. Zhang, Z. Yang, S. Schultz, Y. Song,
J. Hu, A. Jones, Z. Dong et al., “ART: Customizing Accelerators for
DNN-Enabled Real-Time Safety-Critical Systems,” in Proceedings of
the Great Lakes Symposium on VLSI 2025, 2025, pp. 442–449.

[24] J. Guan, R. Wei, D. You, Y. Wang, R. Yang, H. Wang, and Z. Jiang,
“MESC: Re-thinking Algorithmic Priority and/or Criticality Inversions
for Heterogeneous MCSs,” in 2024 IEEE Real-Time Systems Symposium
(RTSS). IEEE, 2024, pp. 1–14.

[25] K. Jozwik, H. Tomiyama, S. Honda, and H. Takada, “A novel mech-
anism for effective hardware task preemption in dynamically recon-
figurable systems,” in 2010 International Conference on Field Pro-
grammable Logic and Applications. IEEE, 2010, pp. 352–355.

[26] E. Rossi, M. Damschen, L. Bauer, G. Buttazzo, and J. Henkel, “Pre-
emption of the Partial Reconfiguration Process to Enable Real-Time
Computing With FPGAs,” vol. 11, no. 2, 2018.

[27] S. Attia and V. Betz, “Feel free to interrupt: Safe task stopping to
enable FPGA checkpointing and context switching,” ACM Transactions
on Reconfigurable Technology and Systems (TRETS), vol. 13, no. 1, pp.
1–27, 2020.

[28] A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G. But-
tazzo, “A framework for supporting real-time applications on dynamic
reconfigurable FPGAs,” in 2016 IEEE Real-Time Systems Symposium
(RTSS). IEEE, 2016, pp. 1–12.

[29] M. Pagani, A. Balsini, A. Biondi, M. Marinoni, and G. Buttazzo, “A
Linux-based support for developing real-time applications on hetero-
geneous platforms with dynamic FPGA reconfiguration,” in 2017 30th
IEEE International System-on-Chip Conference (SOCC). IEEE, 2017,
pp. 96–101.

[30] B. Seyoum, M. Pagani, A. Biondi, and G. Buttazzo, “Automating the
design flow under dynamic partial reconfiguration for hardware-software
co-design in FPGA SoC,” in Proceedings of the 36th Annual ACM
Symposium on Applied Computing, 2021, pp. 481–490.

[31] AMD, “AMD Vitis HLS .” [Online]. Available: https://www.amd.com/
en/products/software/adaptive-socs-and-fpgas/vitis/vitis-hls.html

[32] A. Lu, Z. Fang, W. Liu, and L. Shannon, “Demystifying the memory
system of modern datacenter FPGAs for software programmers through
microbenchmarking,” in The 2021 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays, 2021, pp. 105–115.

[33] J. Cong, P. Wei, C. H. Yu, and P. Zhou, “Bandwidth optimization through
on-chip memory restructuring for hls. In 2017 54th ACM/EDAC/IEEE
Design Automation Conference (DAC),” 2017.

[34] AMD/Xilinx, Versal AI Core Series VCK190 Evaluation Kit.
[35] Y.-K. Choi and J. Cong, “Hlscope: High-level performance debugging

for fpga designs,” in 2017 IEEE 25th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), 2017,
pp. 125–128.

[36] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jégou, “Training data-efficient image transformers & distillation
through attention,” in International conference on machine learning.
PMLR, 2021, pp. 10 347–10 357.

[37] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understanding,”
in Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language

13



Technologies, Volume 1 (Long and Short Papers), J. Burstein, C. Doran,
and T. Solorio, Eds. Minneapolis, Minnesota: Association for Compu-
tational Linguistics, Jun. 2019, pp. 4171–4186.

[38] R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas, “PointNet: Deep
Learning on Point Sets for 3D Classification and Segmentation,” in 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017, pp. 77–85.

[39] I. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Un-
terthiner, J. Yung, A. Steiner, D. Keysers, J. Uszkoreit, M. Lucic, and
A. Dosovitskiy, “MLP-mixer: an all-MLP architecture for vision,” in
Proceedings of the 35th International Conference on Neural Information
Processing Systems, ser. NIPS ’21. Red Hook, NY, USA: Curran
Associates Inc., 2021.

[40] Synopsys, “VCS: Functional Verification Solution.” [Online]. Available:
https://www.synopsys.com/verification/simulation/vcs.html

[41] E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-
bility tests,” Real-time systems, vol. 30, no. 1, pp. 129–154, 2005.

14


